Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition

计算机科学 判别式 人工智能 嵌入 模式识别(心理学) 深度学习 背景(考古学) 卷积神经网络 串联(数学) 高斯分布 残余物 机器学习 算法 数学 生物 组合数学 物理 古生物学 量子力学
作者
Yanbu Guo,Dongming Zhou,Weihua Li,Jinde Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:207: 118004-118004 被引量:8
标识
DOI:10.1016/j.eswa.2022.118004
摘要

The dysregulation of the translation initiation causes some cancers and metabolic disorders. However, the experimental verification of translation initiation sites (TIS) is expensive and small-scale, and the co-occurrence interaction relationship from genomic sequences is essential for knowledge discovery of TIS. In this work, a deep Gaussian residual neural computational model (GNet) is proposed to learn dynamic embeddings for parameter learning of discriminative features via context-aware modeling, and accurately identify TIS via co-occurrence embedding. GNet includes multi-scale Gaussian gated convolutional networks and bidirectional gated recurrent units. Particularly, a Gaussian gated linear unit is devised to extract local co-occurrence embedding vectors of genomic sequences, and the unit can reduce vanishing gradient problems and enable the recognition model to obtain powerful learning capabilities. Moreover, a stochastic linear skip gated connection is designed to boost the information exchange and extract complex contextual features between low and high layers, and vanishing gradients can be largely alleviated during training. Then, the gated recurrent unit is used to extract global long-term dependency features via identity connections. Consequently, to obtain global embedding information of sequences, a concatenation operation is used to fuse local and long discriminative features. Experiments demonstrate that GNet is an efficient and effective TIS recognition model and achieves remarkable results over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜不悔发布了新的文献求助30
1秒前
白若可依发布了新的文献求助10
1秒前
1秒前
just发布了新的文献求助10
2秒前
依旧发布了新的文献求助10
2秒前
小二郎应助甜美鬼神采纳,获得10
3秒前
房明锴完成签到,获得积分20
3秒前
wanci应助周维采纳,获得10
3秒前
3秒前
4秒前
浮游应助offred采纳,获得10
4秒前
我嘞个豆完成签到,获得积分10
4秒前
wanci应助岩追研采纳,获得10
4秒前
5秒前
5秒前
5秒前
zjq发布了新的文献求助10
5秒前
房明锴发布了新的文献求助10
6秒前
6秒前
znsmaqwdy发布了新的文献求助10
6秒前
情怀应助MH采纳,获得10
6秒前
虚心元绿完成签到,获得积分10
7秒前
7秒前
save发布了新的文献求助10
7秒前
Wang发布了新的文献求助200
7秒前
西木完成签到,获得积分10
7秒前
清爽朋友发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
狂野绿竹完成签到,获得积分10
9秒前
11完成签到,获得积分10
9秒前
9秒前
hoongyan完成签到 ,获得积分10
11秒前
11秒前
侯笑笑发布了新的文献求助30
11秒前
孙行行完成签到,获得积分10
12秒前
洁净山灵完成签到,获得积分10
12秒前
科研通AI6应助hersy采纳,获得10
12秒前
可积完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709