Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition

计算机科学 判别式 人工智能 嵌入 模式识别(心理学) 深度学习 背景(考古学) 卷积神经网络 串联(数学) 高斯分布 残余物 机器学习 算法 数学 生物 组合数学 物理 古生物学 量子力学
作者
Yanbu Guo,Dongming Zhou,Weihua Li,Jinde Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 118004-118004 被引量:8
标识
DOI:10.1016/j.eswa.2022.118004
摘要

The dysregulation of the translation initiation causes some cancers and metabolic disorders. However, the experimental verification of translation initiation sites (TIS) is expensive and small-scale, and the co-occurrence interaction relationship from genomic sequences is essential for knowledge discovery of TIS. In this work, a deep Gaussian residual neural computational model (GNet) is proposed to learn dynamic embeddings for parameter learning of discriminative features via context-aware modeling, and accurately identify TIS via co-occurrence embedding. GNet includes multi-scale Gaussian gated convolutional networks and bidirectional gated recurrent units. Particularly, a Gaussian gated linear unit is devised to extract local co-occurrence embedding vectors of genomic sequences, and the unit can reduce vanishing gradient problems and enable the recognition model to obtain powerful learning capabilities. Moreover, a stochastic linear skip gated connection is designed to boost the information exchange and extract complex contextual features between low and high layers, and vanishing gradients can be largely alleviated during training. Then, the gated recurrent unit is used to extract global long-term dependency features via identity connections. Consequently, to obtain global embedding information of sequences, a concatenation operation is used to fuse local and long discriminative features. Experiments demonstrate that GNet is an efficient and effective TIS recognition model and achieves remarkable results over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顶上之战发布了新的文献求助30
刚刚
千早爱音应助123采纳,获得10
2秒前
2秒前
chenmeimei2012完成签到 ,获得积分10
3秒前
3秒前
John发布了新的文献求助10
4秒前
5秒前
苟文锋发布了新的文献求助10
6秒前
7秒前
eating完成签到,获得积分10
8秒前
Windsea发布了新的文献求助10
9秒前
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
清脆天空发布了新的文献求助10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
及禾应助科研通管家采纳,获得20
9秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
fyattojsk应助科研通管家采纳,获得20
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
谦让疾完成签到,获得积分20
12秒前
14秒前
Ava应助narcol采纳,获得30
14秒前
JamesPei应助Helium采纳,获得10
14秒前
清脆天空完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452