Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition

计算机科学 判别式 人工智能 嵌入 模式识别(心理学) 深度学习 背景(考古学) 卷积神经网络 串联(数学) 高斯分布 残余物 机器学习 算法 数学 生物 组合数学 物理 古生物学 量子力学
作者
Yanbu Guo,Dongming Zhou,Weihua Li,Jinde Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 118004-118004 被引量:8
标识
DOI:10.1016/j.eswa.2022.118004
摘要

The dysregulation of the translation initiation causes some cancers and metabolic disorders. However, the experimental verification of translation initiation sites (TIS) is expensive and small-scale, and the co-occurrence interaction relationship from genomic sequences is essential for knowledge discovery of TIS. In this work, a deep Gaussian residual neural computational model (GNet) is proposed to learn dynamic embeddings for parameter learning of discriminative features via context-aware modeling, and accurately identify TIS via co-occurrence embedding. GNet includes multi-scale Gaussian gated convolutional networks and bidirectional gated recurrent units. Particularly, a Gaussian gated linear unit is devised to extract local co-occurrence embedding vectors of genomic sequences, and the unit can reduce vanishing gradient problems and enable the recognition model to obtain powerful learning capabilities. Moreover, a stochastic linear skip gated connection is designed to boost the information exchange and extract complex contextual features between low and high layers, and vanishing gradients can be largely alleviated during training. Then, the gated recurrent unit is used to extract global long-term dependency features via identity connections. Consequently, to obtain global embedding information of sequences, a concatenation operation is used to fuse local and long discriminative features. Experiments demonstrate that GNet is an efficient and effective TIS recognition model and achieves remarkable results over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到 ,获得积分10
刚刚
CodeCraft应助可爱半凡采纳,获得10
1秒前
最好的小刘同学完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
称心的新之完成签到,获得积分10
3秒前
Akim应助fxx采纳,获得10
4秒前
5秒前
6秒前
华仔应助整齐的傲之采纳,获得10
7秒前
9秒前
笑点低的凝安完成签到,获得积分10
9秒前
9秒前
佩琪完成签到,获得积分10
11秒前
JHL发布了新的文献求助10
11秒前
11秒前
高血压发布了新的文献求助10
11秒前
侯zijun完成签到,获得积分20
11秒前
11秒前
一向年光无限身完成签到,获得积分10
12秒前
陈沙发布了新的文献求助30
12秒前
13秒前
大气如雪完成签到,获得积分10
13秒前
14秒前
CodeCraft应助千凡采纳,获得10
15秒前
天天快乐应助苏休夫采纳,获得10
15秒前
15秒前
鸣鸣完成签到,获得积分10
16秒前
16秒前
研友_VZG7GZ应助嗯嗯哈哈采纳,获得10
17秒前
高贵紫丝发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
20秒前
xueshu发布了新的文献求助10
20秒前
mmyhn发布了新的文献求助10
21秒前
cC应助标致断天采纳,获得10
21秒前
海大Stephen发布了新的文献求助10
22秒前
22秒前
超帅悟空完成签到,获得积分10
22秒前
dfb发布了新的文献求助10
22秒前
JamesPei应助风清扬采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299