Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition

计算机科学 判别式 人工智能 嵌入 模式识别(心理学) 深度学习 背景(考古学) 卷积神经网络 串联(数学) 高斯分布 残余物 机器学习 算法 数学 物理 量子力学 古生物学 组合数学 生物
作者
Yanbu Guo,Dongming Zhou,Weihua Li,Jinde Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 118004-118004 被引量:6
标识
DOI:10.1016/j.eswa.2022.118004
摘要

The dysregulation of the translation initiation causes some cancers and metabolic disorders. However, the experimental verification of translation initiation sites (TIS) is expensive and small-scale, and the co-occurrence interaction relationship from genomic sequences is essential for knowledge discovery of TIS. In this work, a deep Gaussian residual neural computational model (GNet) is proposed to learn dynamic embeddings for parameter learning of discriminative features via context-aware modeling, and accurately identify TIS via co-occurrence embedding. GNet includes multi-scale Gaussian gated convolutional networks and bidirectional gated recurrent units. Particularly, a Gaussian gated linear unit is devised to extract local co-occurrence embedding vectors of genomic sequences, and the unit can reduce vanishing gradient problems and enable the recognition model to obtain powerful learning capabilities. Moreover, a stochastic linear skip gated connection is designed to boost the information exchange and extract complex contextual features between low and high layers, and vanishing gradients can be largely alleviated during training. Then, the gated recurrent unit is used to extract global long-term dependency features via identity connections. Consequently, to obtain global embedding information of sequences, a concatenation operation is used to fuse local and long discriminative features. Experiments demonstrate that GNet is an efficient and effective TIS recognition model and achieves remarkable results over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助珊珊采纳,获得100
刚刚
1秒前
传奇3应助奇凌采纳,获得10
1秒前
1秒前
南风知我意完成签到,获得积分10
1秒前
Lucas应助忆夕采纳,获得10
2秒前
2秒前
Link完成签到,获得积分20
3秒前
qq发布了新的文献求助10
3秒前
透明人发布了新的文献求助10
4秒前
4秒前
chunchun完成签到,获得积分10
4秒前
烟花应助有风塘采纳,获得10
4秒前
小马哥发布了新的文献求助10
5秒前
5秒前
5秒前
快乐应助简单如容采纳,获得10
6秒前
oioioioioi完成签到,获得积分10
6秒前
czl完成签到,获得积分10
6秒前
neiz完成签到,获得积分10
6秒前
奋斗的雨泽完成签到,获得积分10
6秒前
6秒前
桑尼号完成签到,获得积分10
7秒前
南风发布了新的文献求助10
7秒前
8秒前
动听元彤发布了新的文献求助10
8秒前
小葛完成签到,获得积分10
9秒前
9秒前
左丘忻完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
9秒前
英勇灵安完成签到,获得积分10
9秒前
大气早晨发布了新的文献求助10
10秒前
10秒前
10秒前
ai zs发布了新的文献求助10
11秒前
11秒前
斯文败类应助ken采纳,获得10
11秒前
祥梦伊飞应助oioioioioi采纳,获得10
12秒前
小竹笋完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012