摘要
Tetracycline, Aminoglycoside, Macrolide, and Miscellaneous Antibiotics Anti-Infectives Lester A. Mitscher, Lester A. Mitscher Kansas University, Department of Medicinal Chemistry, Lawrence, KSSearch for more papers by this author Lester A. Mitscher, Lester A. Mitscher Kansas University, Department of Medicinal Chemistry, Lawrence, KSSearch for more papers by this author First published: 15 September 2010 https://doi.org/10.1002/0471266949.bmc088.pub2Citations: 3 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The identity, chemistry, biosynthesis, antimicrobial spectra, molecular mode of action, bacterial resistance mechanisms, side effects, and clinical uses of these important chemotherapeutic agents are discussed. References 1 Hansen JL, Moore PB, Steitz TA. Structures of five antibiotics bound at the peptidyltransferase center of the large ribosomal subunit. J Mol Biol. 2003; 330 (5): 1061–1075. 10.1016/S0022-2836(03)00668-5 CASPubMedWeb of Science®Google Scholar 2 Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 2002; 10 (1): 117–128. 10.1016/S1097-2765(02)00570-1 CASPubMedWeb of Science®Google Scholar 3 Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289 (5481): 905–920. 10.1126/science.289.5481.905 CASPubMedWeb of Science®Google Scholar 4 Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyltransferase centre in eubacteria. Nature 2001; 413 (6858): 814–821. 10.1038/35101544 CASPubMedWeb of Science®Google Scholar 5 Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A. Alterations at the peptidyltransferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2004; 2: 4. 10.1186/1741-7007-2-4 PubMedWeb of Science®Google Scholar 6 Tocilj A, Schlunzen F, Janell D, Gluhmann M, Hansen HA, Harms J, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A. The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci USA 1999; 96 (25): 14252–14257. 10.1073/pnas.96.25.14252 CASPubMedWeb of Science®Google Scholar 7 Brodersen DE, Clemons WM, Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000; 103 (7): 1143–1154. 10.1016/S0092-8674(00)00216-6 CASPubMedWeb of Science®Google Scholar 8 Anokhina MM, Barta A, Nierhaus KH, Spiridonova VA, Kopylov AM. Mapping of the second tetracycline binding site on the ribosomal small subunit of E. coli. Nucleic Acids Res 2004; 32 (8): 2594–2597. 10.1093/nar/gkh583 CASPubMedWeb of Science®Google Scholar 9 Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 2001; 20 (8): 1829–1839. 10.1093/emboj/20.8.1829 CASPubMedWeb of Science®Google Scholar 10 Heffron SE, Mui S, Aorora A, Abel K, Bergmann E, Jurnak F. Molecular complementarity between tetracycline and the GTPase active site of elongation factor Tu. Acta Crystallogr D Biol Crystallogr 2006; 62 (Pt 11): 1392–1400. 10.1107/S0907444906035426 CASPubMedWeb of Science®Google Scholar 11 Olson MW, Ruzin A, Feyfant E, Rush TS, 3rd O'Connell J, Bradford PA. Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother 2006; 50 (6): 2156–2166. 10.1128/AAC.01499-05 CASPubMedWeb of Science®Google Scholar 12 Bauer G, Berens C, Projan SJ, Hillen W. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 2004; 53 (4): 592–599. 10.1093/jac/dkh125 CASPubMedWeb of Science®Google Scholar 13 Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, Gin A, Karlowsky JA, Hoban DJ. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004; 64 (1): 63–88. 10.2165/00003495-200464010-00005 CASPubMedWeb of Science®Google Scholar 14 Nakano T, Miyake K, Endo H, Dairi T, Mizukami T, Katsumata R. Identification and cloning of the gene involved in the final step of chlortetracycline biosynthesis in Streptomyces aureofaciens. Biosci Biotechnol Biochem 2004; 68 (6): 1345–1352. 10.1271/bbb.68.1345 CASPubMedWeb of Science®Google Scholar 15 Dairi T, Nakano T, Mizukami T, Aisaka K, Hasegawa M, Katsumata R. Conserved organization of genes for biosynthesis of chlortetracycline in Streptomyces strains. Biosci Biotechnol Biochem 1995; 59 (7): 1360–1361. 10.1271/bbb.59.1360 CASPubMedWeb of Science®Google Scholar 16 Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem 1995; 59 (6): 1099–1106. 10.1271/bbb.59.1099 CASPubMedWeb of Science®Google Scholar 17 Binnie C, Warren M, Butler MJ. Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol 1989; 171 (2): 887–895. 10.1128/JB.171.2.887-895.1989 CASPubMedWeb of Science®Google Scholar 18 Mitscher LA, Martin JH, Miller PA, Shu P, Bohonos N. 5-Hydroxy-7-chlortetracycline. J Am Chem Soc 1966; 88: 3647–3648. 10.1021/ja00967a033 CASWeb of Science®Google Scholar 19 Devasthale PV, Mitscher LA, Telikepalli H, Vander Velde D, Zou JY, Ax HA, Tymiak AA. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. III. Absolute stereochemistry of the dactylocyclines. J Antibiot 1992; 45 (12): 1907–1913. 10.7164/antibiotics.45.1907 CASPubMedWeb of Science®Google Scholar 20 Tymiak AA, Ax HA, Bolgar MS, Kahle AD, Porubcan MA, Andersen NH. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. II. Structure elucidation. J Antibiot 1992; 45 (12): 1899–1906. 10.7164/antibiotics.45.1899 CASPubMedWeb of Science®Google Scholar 21 Wells JS, O'Sullivan J, Aklonis C, Ax HA, Tymiak AA, Kirsch DR, Trejo WH, Principe P. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. I. Taxonomy, production, isolation and biological activity. J Antibiot 1992; 45 (12): 1892–1898. 10.7164/antibiotics.45.1892 CASPubMedWeb of Science®Google Scholar 22 Mitscher LA, Swayze JK, Hogberg T, Khanna I, Rao GS, Theriault RJ, Kohl W, Hanson C, Egan R. Biosynthesis of cetocycline. J Antibiot 1983; 36 (10): 1405–1407. 10.7164/antibiotics.36.1405 CASPubMedWeb of Science®Google Scholar 23 Mitscher LA, Juvarkar JV, Rosenbrook W, Jr, Andres WW, Schenk J, Egan RS. Structure of chelocardin, a novel tetracycline antibiotic. J Am Chem Soc 1970; 92 (20): 6070–6071. 10.1021/ja00723a049 CASPubMedWeb of Science®Google Scholar 24 Mitscher LA, Rosenbrook W, Jr, Andres WW, Egan RS, Schenck J, Juvarkar JV. Structure of chelocardin, a novel tetracycline antibiotic. Antimicrob Agents Chemother 1970; 10: 38–41. CASPubMedGoogle Scholar 25 van Hoek AH, Mayrhofer S, Domig KJ, Florez AB, Ammor MS, Mayo B, Aarts HJ. Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johnsonii. Antimicrob Agents Chemother 2008; 52 (1): 248–252. 10.1128/AAC.00714-07 CASPubMedWeb of Science®Google Scholar 26 Patterson AJ, Rincon MT, Flint HJ, Scott KP. Mosaic tetracycline resistance genes are widespread in human and animal fecal samples. Antimicrob Agents Chemother 2007; 51 (3): 1115–1118. 10.1128/AAC.00725-06 CASPubMedWeb of Science®Google Scholar 27 Jones CH, Tuckman M, Howe AY, Orlowski M, Mullen S, Chan K, Bradford PA. Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 2006; 50 (2): 505–510. 10.1128/AAC.50.2.505-510.2006 CASPubMedWeb of Science®Google Scholar 28 Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245 (2): 195–203. 10.1016/j.femsle.2005.02.034 CASPubMedWeb of Science®Google Scholar 29 Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56 (1): 20–51. 10.1093/jac/dki171 CASPubMedWeb of Science®Google Scholar 30 Aminov RI, Garrigues-Jeanjean N, Mackie RI. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 2001; 67 (1): 22–32. 10.1128/AEM.67.1.22-32.2001 CASPubMedWeb of Science®Google Scholar 31 Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 1996; 19 (1): 1–24. 10.1111/j.1574-6976.1996.tb00251.x CASPubMedWeb of Science®Google Scholar 32 Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996; 165 (6): 359–369. 10.1007/s002030050339 CASPubMedWeb of Science®Google Scholar 33 Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996; 60 (4): 575–608. 10.1128/MR.60.4.575-608.1996 CASPubMedWeb of Science®Google Scholar 34 Guillaume G, Ledent V, Moens W, Collard JM. Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb Drug Resist 2004; 10 (1): 11–26. 10.1089/107662904323047754 CASPubMedWeb of Science®Google Scholar 35 Borbone S, Lupo A, Mezzatesta ML, Campanile F, Santagati M, Stefani S. Evaluation of the in vitro activity of tigecycline against multiresistant Gram-positive cocci containing tetracycline resistance determinants. Int J Antimicrob Agents 2008; 31 (3): 209–215. 10.1016/j.ijantimicag.2007.03.014 CASPubMedWeb of Science®Google Scholar 36 Tuckman M, Petersen PJ, Howe AY, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH. Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline. Antimicrob Agents Chemother 2007; 51 (9): 3205–3211. 10.1128/AAC.00625-07 CASPubMedWeb of Science®Google Scholar 37 Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology 2005; 151 (Pt 7): 2315–2322. 10.1099/mic.0.27997-0 CASPubMedWeb of Science®Google Scholar 38 Lanig H, Othersen OG, Seidel U, Beierlein FR, Exner TE, Clark T. Structural changes and binding characteristics of the tetracycline-repressor binding site on induction. J Med Chem 2006; 49 (12): 3444–3447. 10.1021/jm060289g CASPubMedWeb of Science®Google Scholar 39 Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, Saenger W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 1994; 264 (5157): 418–420. 10.1126/science.8153629 CASPubMedWeb of Science®Google Scholar 40 Izdebski R, Sadowy E, Fiett J, Grzesiowski P, Gniadkowski M, Hryniewicz W. Clonal diversity and resistance mechanisms in tetracycline-nonsusceptible Streptococcus pneumoniae isolates in Poland. Antimicrob Agents Chemother 2007; 51 (4): 1155–1163. 10.1128/AAC.01384-06 CASPubMedWeb of Science®Google Scholar 41 Jones CH, Tuckman M, Murphy E, Bradford PA. Identification and sequence of a tet(M) tetracycline resistance determinant homologue in clinical isolates of Escherichia coli. J Bacteriol 2006; 188 (20): 7151–7164. 10.1128/JB.00705-06 CASPubMedWeb of Science®Google Scholar 42 Felmingham D. Tigecyclin--the first glycylcycline to undergo clinical development: an overview of in vitro activity compared to tetracycline. J Chemother 2005; 17 (Suppl 1): 5–11. 10.1179/joc.2005.17.Supplement-1.5 CASPubMedWeb of Science®Google Scholar 43 Barden TC, Buckwalter BL, Testa RT, Petersen PJ, Lee VJ. “ Glycylcyclines”. 3. 9-Aminodoxycyclinecarboxamides. J Med Chem 1994; 37 (20): 3205–3211. 10.1021/jm00046a003 CASPubMedWeb of Science®Google Scholar 44 Sum PE, Lee VJ, Testa RT, Hlavka JJ, Ellestad GA, Bloom JD, Gluzman Y, Tally FP. Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem 1994; 37 (1): 184–188. 10.1021/jm00027a023 CASPubMedWeb of Science®Google Scholar 45 Nelson ML, Park BH, Levy SB. Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J Med Chem 1994; 37 (9): 1355–1361. 10.1021/jm00035a016 CASPubMedWeb of Science®Google Scholar 46 Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 2003; 47 (10): 3357–3360. 10.1128/AAC.47.10.3357-3360.2003 CASPubMedWeb of Science®Google Scholar 47 Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother 2004; 48 (6): 1968–1973. 10.1128/AAC.48.6.1968-1973.2004 CASPubMedWeb of Science®Google Scholar 48 Pillai SP, Pillai CA, Shankel DM, Mitscher LA. The ability of certain antimutagenic agents to prevent development of antibiotic resistance. Mutat Res 2001; 496 (1–2): 61–73. 10.1016/S1383-5718(01)00219-4 CASPubMedWeb of Science®Google Scholar 49 Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2006; 50 (9): 3124–3131. 10.1128/AAC.00394-06 CASPubMedWeb of Science®Google Scholar 50 Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 2007; 51 (10): 3485–3490. 10.1128/AAC.00527-07 CASPubMedWeb of Science®Google Scholar 51 Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 2006; 54 (2): 258–265. 10.1016/j.jaad.2005.10.004 PubMedWeb of Science®Google Scholar 52 Sorsa T, Ramamurthy NS, Vernillo AT, Zhang X, Konttinen YT, Rifkin BR, Golub LM. Functional sites of chemically modified tetracyclines: inhibition of the oxidative activation of human neutrophil and chicken osteoclast pro-matrix metalloproteinases. J Rheumatol 1998; 25 (5): 975–982. CASPubMedWeb of Science®Google Scholar 53 Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 2002; 98 (2): 297–309. 10.1002/ijc.10168 CASPubMedWeb of Science®Google Scholar 54 Syed S, Takimoto C, Hidalgo M, Rizzo J, Kuhn JG, Hammond LA, Schwartz G, Tolcher A, Patnaik A, Eckhardt SG, Rowinsky EK. A phase I and pharmacokinetic study of Col-3 (Metastat), an oral tetracycline derivative with potent matrix metalloproteinase and antitumor properties. Clin Cancer Res 2004; 10 (19): 6512–6521. 10.1158/1078-0432.CCR-04-0804 CASPubMedWeb of Science®Google Scholar 55 Liu Y, Ryan ME, Lee HM, Simon S, Tortora G, Lauzon C, Leung MK, Golub LM. A chemically modified tetracycline (CMT-3) is a new antifungal agent. Antimicrob Agents Chemother 2002; 46 (5): 1447–1454. 10.1128/AAC.46.5.1447-1454.2002 CASPubMedWeb of Science®Google Scholar 56 Hunter CL, Bachman D, Granholm AC. Minocycline prevents cholinergic loss in a mouse model of Down's syndrome. Ann Neurol 2004; 56 (5): 675–688. 10.1002/ana.20250 CASPubMedWeb of Science®Google Scholar 57 Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm AC. Minocycline protects basal forebrain cholinergic neurons from mu p75-saporin immunotoxic lesioning. Eur J Neurosci 2004; 19 (12): 3305–3316. 10.1111/j.0953-816X.2004.03439.x PubMedWeb of Science®Google Scholar 58 Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM. Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J Rheumatol 1997; 24 (7): 1324–1331. CASPubMedWeb of Science®Google Scholar 59 Diguet E, Gross CE, Tison F, Bezard E. Rise and fall of minocycline in neuroprotection: need to promote publication of negative results. Exp Neurol 2004; 189 (1): 1–4. 10.1016/j.expneurol.2004.05.016 CASPubMedWeb of Science®Google Scholar 60 Maitra SR, Bhaduri S, Chen E, Shapiro MJ. Role of chemically modified tetracycline on TNF-alpha and mitogen-activated protein kinases in sepsis. Shock 2004; 22 (5): 478–481. 10.1097/01.shk.0000140298.40440.51 CASPubMedWeb of Science®Google Scholar 61 Alexander AM, Gonda I, Harpur ES, Kayes JB. Interaction of aminoglycoside antibiotics with phospholipid liposomes studies by microelectrophoresis. J Antibiot 1979; 32 (5): 504–510. 10.7164/antibiotics.32.504 CASPubMedWeb of Science®Google Scholar 62 Schacht J, Lodhi S, Weiner ND. Effects of neomycin on polyphosphoinositides in inner ear tissues and monomolecular films. Adv Exp Med Biol 1977; 84: 191–208. 10.1007/978-1-4684-3279-4_9 CASPubMedGoogle Scholar 63 Ali BH. Gentamicin nephrotoxicity in humans and animals: some recent research. Gen Pharmacol 1995; 26 (7): 1477–1487. 10.1016/0306-3623(95)00049-6 CASPubMedWeb of Science®Google Scholar 64 Seemungal BM, Bronstein AM. Aminoglycoside ototoxicity: vestibular function is also vulnerable. BMJ 2007; 335 (7627): 952. 10.1136/bmj.39388.451019.1F PubMedWeb of Science®Google Scholar 65 Bitner-Glindzicz M, Rahman S. Ototoxicity caused by aminoglycosides. BMJ 2007; 335 (7624): 784–785. 10.1136/bmj.39301.680266.AE PubMedWeb of Science®Google Scholar 66 Rizzi MD, Hirose K. Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 2007; 15 (5): 352–357. 10.1097/MOO.0b013e3282ef772d PubMedGoogle Scholar 67 Rybak LP, Ramkumar V. Ototoxicity. Kidney Int 2007; 72 (8): 931–935. 10.1038/sj.ki.5002434 CASPubMedWeb of Science®Google Scholar 68 Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45 (6): 753–760. 10.1086/520991 CASPubMedWeb of Science®Google Scholar 69 Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 2007; 223 (1): 86–98. 10.1016/j.taap.2007.05.004 CASPubMedWeb of Science®Google Scholar 70 Nagai J. Molecular mechanisms underlying renal accumulation of aminoglycoside antibiotics and mechanism-based approach for developing nonnephrotoxic aminoglycoside therapy. Yakugaku Zasshi 2006; 126 (5): 327–335. 10.1248/yakushi.126.327 CASPubMedWeb of Science®Google Scholar 71 Nagai J, Takano M. Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet 2004; 19 (3): 159–170. 10.2133/dmpk.19.159 CASPubMedGoogle Scholar 72 Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999; 43 (5): 1003–1012. 10.1128/AAC.43.5.1003 CASPubMedWeb of Science®Google Scholar 73 Manian FA, Stone WJ, Alford RH. Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis 1990; 12 (2): 236–249. 10.1093/clinids/12.2.236 CASPubMedWeb of Science®Google Scholar 74 Coleman JW, Yao FY, Jalandoni SR, Artusio JF, McGovern JH. Neomycin-induced neuromuscular blockade. Urology 1981; 17 (3): 265–267. 10.1016/0090-4295(81)90045-5 CASPubMedWeb of Science®Google Scholar 75 Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy 1997; 17 (6): 1220–1232. 10.1002/j.1875-9114.1997.tb03085.x CASPubMedWeb of Science®Google Scholar 76 Crann SA, Schacht J. Activation of aminoglycoside antibiotics to cytotoxins. Audiol Neurootol 1996; 1 (2): 80–85. 10.1159/000259187 CASPubMedGoogle Scholar 77 Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987; 327 (6121): 389–394. 10.1038/327389a0 CASPubMedWeb of Science®Google Scholar 78 Hermann T, Westhof E. Docking of cationic antibiotics to negatively charged pockets in RNA folds. J Med Chem 1999; 42 (7): 1250–1261. 10.1021/jm981108g CASPubMedWeb of Science®Google Scholar 79 Leclerc D, Melancon P, Brakier-Gingras L. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res 1991; 19 (14): 3973–3977. 10.1093/nar/19.14.3973 CASPubMedWeb of Science®Google Scholar 80 Woodcock J, Moazed D, Cannon M, Davies J, Noller HF. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J 1991; 10 (10): 3099–3103. 10.1002/j.1460-2075.1991.tb07863.x CASPubMedWeb of Science®Google Scholar 81 Foster C, Champney WS. Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin. Arch Microbiol 2008; 189 (5): 441–449. 10.1007/s00203-007-0334-6 CASPubMedWeb of Science®Google Scholar 82 Yang G, Trylska J, Tor Y, McCammon JA. Binding of aminoglycosidic antibiotics to the oligonucleotide A-site model and 30S ribosomal subunit: Poisson–Boltzmann model, thermal denaturation, and fluorescence studies. J Med Chem 2006; 49 (18): 5478–5490. 10.1021/jm060288o CASPubMedWeb of Science®Google Scholar 83 Kondo J, Francois B, Russell RJ, Murray JB, Westhof E. Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the gamma-amino-alpha-hydroxybutyryl (haba) group. Biochimie 2006; 88 (8): 1027–1031. 10.1016/j.biochi.2006.05.017 CASPubMedWeb of Science®Google Scholar 84 Hobbie SN, Pfister P, Bruell C, Sander P, Francois B, Westhof E, Bottger EC. Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob Agents Chemother 2006; 50 (4): 1489–1496. 10.1128/AAC.50.4.1489-1496.2006 CASPubMedWeb of Science®Google Scholar 85 Francois B, Russell RJ, Murray JB, Aboul-ela F, Masquida B, Vicens Q, Westhof E. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 2005; 33 (17): 5677–5690. 10.1093/nar/gki862 CASPubMedWeb of Science®Google Scholar 86 Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev 2005; 105 (2): 477–498. 10.1021/cr0301088 CASPubMedWeb of Science®Google Scholar 87 Vicens Q, Westhof E. RNA as a drug target: the case of aminoglycosides. ChemBioChem 2003; 4 (10): 1018–1023. 10.1002/cbic.200300684 CASPubMedWeb of Science®Google Scholar 88 Lynch SR, Gonzalez RL, Puglisi JD. Comparison of X-ray crystal structure of the 30S subunit–antibiotic complex with NMR structure of decoding site oligonucleotide–paromomycin complex. Structure 2003; 11 (1): 43–53. 10.1016/S0969-2126(02)00934-6 CASPubMedWeb of Science®Google Scholar 89 Vicens Q, Westhof E. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 2002; 9 (6): 747–755. 10.1016/S1074-5521(02)00153-9 CASPubMedWeb of Science®Google Scholar 90 Vicens Q, Westhof E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 2001; 9 (8): 647–658. 10.1016/S0969-2126(01)00629-3 CASPubMedWeb of Science®Google Scholar 91 Ogle JM, Brodersen DE, Clemons WM, Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 2001; 292 (5518): 897–902. 10.1126/science.1060612 CASPubMedWeb of Science®Google Scholar 92 Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000; 407 (6802): 340–348. 10.1038/35030019 CASPubMedWeb of Science®Google Scholar 93 Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem 2005; 74: 129–177. 10.1146/annurev.biochem.74.061903.155440 CASPubMedWeb of Science®Google Scholar 94 Lim VI, Curran JF. Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA 2001; 7 (7): 942–957. 10.1017/S135583820100214X CASPubMedWeb of Science®Google Scholar 95 Sanbonmatsu KY, Joseph S, Tung CS. Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 2005; 102 (44): 15854–15859. 10.1073/pnas.0503456102 CASPubMedWeb of Science®Google Scholar 96 Meroueh SO, Mobashery S. Conformational transition in the aminoacyl t-RNA site of the bacterial ribosome both in the presence and absence of an aminoglycoside antibiotic. Chem Biol Drug Des 2007; 69 (5): 291–297. 10.1111/j.1747-0285.2007.00505.x CASPubMedWeb of Science®Google Scholar 97 Taber HW, Mueller JP, Miller PF, Arrow AS. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 1987; 51 (4): 439–457. 10.1128/MR.51.4.439-457.1987 CASPubMedWeb of Science®Google Scholar 98 Gilman S, Saunders VA. Uptake of gentamicin by Staphylococcus aureus possessing gentamicin-modifying enzymes: enhancement of uptake by puromycin and N,N′-dicyclohexylcarbodiimide. J Antimicrob Chemother 1986; 18 (3): 301–306. 10.1093/jac/18.3.301 CASPubMedWeb of Science®Google Scholar 99 Gilman S, Saunders VA. Accumulation of gentamicin by Staphylococcus aureus: the role of the transmembrane electrical potential. J Antimicrob Chemother 1986; 17 (1): 37–44. 10.1093/jac/17.1.37 CASPubMedWeb of Science®Google Scholar 100 Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 1987; 51 (3): 341–350. 10.1128/MMBR.51.3.341-350.1987 CASPubMedWeb of Science®Google Scholar 101 Tanaka N, Matsunaga K, Yamaki H, Nishimura T. Inhibition of initiation of DNA synthesis by aminoglycoside antibiotics. Biochem Biophys Res Commun 1984; 122 (1): 460–465. 10.1016/0006-291X(84)90498-4 CASPubMedWeb of Science®Google Scholar 102 Kondo J, Hainrichson M, Nudelman I, Shallom-Shezifi D, Barbieri CM, Pilch DS, Westhof E, Baasov T. Differential selectivity of natural and synthetic aminoglycosides towards the eukaryotic and prokaryotic decoding A sites. ChemBioChem 2007; 8 (14): 1700–1709. 10.1002/cbic.200700271 CASPubMedWeb of Science®Google Scholar 103 Westhof E. Molecular recognition between the ribosomal decoding site and natural or non-natural aminoglycosides. Nucleic Acids Symp Ser (Oxf) (49): 2005; 59–60. 10.1093/nass/49.1.59 CASPubMedGoogle Scholar 104 Hobbie SN, Pfister P, Brull C, Westhof E, Bottger EC. Analysis of the contribution of individual substituents in 4,6-aminoglycoside–ribosome interaction. Antimicrob Agents Chemother 2005; 49 (12): 5112–5118. 10.1128/AAC.49.12.5112-5118.2005 CASPubMedWeb of Science®Google Scholar 105 Vicens Q, Westhof E. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of X-ray crystal structures. Biopolymers 2003; 70 (1): 42–57. 10.1002/bip.10414 CASPubMedWeb of Science®Google Scholar 106 Russell RJ, Murray JB, Lentzen G, Haddad J, Mobashery S. The complex o