集合卡尔曼滤波器
卡尔曼滤波器
扩展卡尔曼滤波器
平滑的
概率密度函数
颗粒过滤器
数学
算法
不变扩展卡尔曼滤波器
α-β滤光片
滤波器(信号处理)
控制理论(社会学)
统计
计算机科学
人工智能
移动视界估计
计算机视觉
控制(管理)
作者
Masaya Murata,Isao Kawano,Koichi Inoue
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2022-06-21
卷期号:67 (12): 6956-6961
被引量:5
标识
DOI:10.1109/tac.2022.3185007
摘要
We propose the ensemble Kalman smoother multiple distribution estimation filter (EnKS-MDEF) for nonlinear state estimation problems. The EnKS-MDEF is an example of the multiple distribution estimation filter (MDEF), which is a particle filter (PF) that estimates the filtered state probability density function (pdf) using multiple conditional state pdfs. The one step behind (OSB) smoothed state pdf used for calculating the filtered state pdf of the MDEF is approximated by the ensemble Kalman smoother (EnKS). Then, the particle weights for the EnKS-MDEF remain equal during the filter execution, which indicates that the EnKS-MDEF is a degeneracy-free PF. Since, the MDEF and the EnKS-MDEF, both estimate the OSB smoothed state pdf prior to calculating the filtered state pdf, these filters provide a simultaneous estimation of filtered and OSB smoothed states. The examples of the EnKS-MDEF are the EnKS-extended and unscented Kalman multiple distribution estimation filters, and their filtering and OSB smoothing performances are evaluated and compared with those for the representative filters and smoothers using a benchmark simulation problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI