Efficient Multi-view K-means Clustering with Multiple Anchor Graphs

聚类分析 计算机科学 聚类系数 数据挖掘 图形 理论计算机科学 人工智能
作者
Ben Yang,Xuetao Zhang,Zhongheng Li,Feiping Nie,Fei Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-12 被引量:24
标识
DOI:10.1109/tkde.2022.3185683
摘要

Multi-view clustering has attracted a lot of attention due to its ability to integrate information from distinct views, but how to improve efficiency is still a hot research topic. Anchor graph-based methods and k-means-based methods are two current popular efficient methods, however, both have limitations. Clustering on the derived anchor graph takes a while for anchor graph-based methods, and the efficiency of k-means-based methods drops significantly when the data dimension is large. To emphasize these issues, we developed an efficient multi-view k-means clustering method with multiple anchor graphs (EMKMC). It first constructs anchor graphs for each view and then integrates these anchor graphs using an improved k-means strategy to obtain sample categories without any extra post-processing. Since EMKMC combines the high-efficiency portions of anchor graph-based methods and k-means-based methods, its efficiency is substantially higher than current fast methods, especially when dealing with large-scale high-dimensional multi-view data. Extensive experiments demonstrate that, compared to other state-of-the-art methods, EMKMC can boost clustering efficiency by several to thousands of times while maintaining comparable or even exceeding clustering effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanjiluotuo11发布了新的文献求助10
刚刚
Paustino完成签到,获得积分10
1秒前
俏皮的匕发布了新的文献求助10
1秒前
2秒前
善学以致用应助阮红亮采纳,获得30
3秒前
3秒前
CipherSage应助博修采纳,获得10
3秒前
4秒前
追寻柚子完成签到,获得积分10
5秒前
戚薇发布了新的文献求助10
5秒前
小马甲应助勤劳翰采纳,获得10
5秒前
5秒前
limh完成签到,获得积分10
6秒前
6秒前
phobeeee完成签到 ,获得积分10
6秒前
自然1111发布了新的文献求助10
6秒前
q1356478314应助田济采纳,获得10
7秒前
胡图图完成签到,获得积分10
7秒前
7秒前
吕方完成签到,获得积分10
7秒前
9秒前
L-g-b完成签到,获得积分10
9秒前
杨多多完成签到,获得积分10
9秒前
LLLLLL完成签到,获得积分10
9秒前
www完成签到,获得积分10
10秒前
lenon发布了新的文献求助10
10秒前
1111发布了新的文献求助10
11秒前
12秒前
机智傀斗完成签到,获得积分10
12秒前
善良天抒完成签到 ,获得积分20
12秒前
宇宙中心发布了新的文献求助10
12秒前
小蘑菇应助吕方采纳,获得10
12秒前
夙夙发布了新的文献求助10
13秒前
TP完成签到,获得积分10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得20
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得30
14秒前
916应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650