Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment

机器人 计算机科学 任务(项目管理) 拍卖算法 集合(抽象数据类型) 解算器 启发式 整数(计算机科学) 贪婪算法 算法 分布式算法 数学优化 分布式计算 人工智能 工程类 拍卖理论 共同价值拍卖 数学 统计 收入等值 系统工程 程序设计语言
作者
Xiaoshan Bai,Andrés Fielbaum,Maximilian Kronmüller,Luzia Knoedler,Javier Alonso–Mora
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1292-1303 被引量:11
标识
DOI:10.1109/tase.2022.3175040
摘要

This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity. Given a sufficiently large robot fleet, the objective is to minimize the robots’ total travel time to transport the packages within their respective time-window constraints. The problem is shown to be NP-hard, and we design two group-based distributed auction algorithms to solve this task assignment problem. Guided by the auction algorithms, robots first distributively calculate feasible package groups that they can serve, and then communicate to find an assignment of package groups. We quantify the potential of the algorithms with respect to the number of employed robots and the capacity of the robots by considering the robots’ total travel time to transport all packages. Simulation results show that the designed algorithms are competitive compared with an exact centralized Integer Linear Program representation solved with the commercial solver Gurobi, and superior to popular greedy algorithms and a heuristic distributed task allocation method. Note to Practitioners—This work presents two group-based distributed auction algorithms for a sufficiently large fleet of robots to efficiently transport a set of dynamically appearing dispersed packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity, and the objective is to minimize the robots’ total travel time to transport all the packages within the prescribed time-windows. The paper’s practical contributions are threefold: First, the multi-robot task assignment problem is formulated through a robot-group assignment strategy, which enables complex logistic scheduling for tasks grouped according to their distributions and time-windows. Second, we theoretically show that the multi-robot task assignment problem is an NP-hard problem, which implies the necessity for designing approximate task assignment algorithms. Third, the proposed group-based distributed auction algorithms are efficient and can be adapted for real scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Zachary完成签到,获得积分10
3秒前
3秒前
旋转木马9个完成签到 ,获得积分10
6秒前
6秒前
找不到头大完成签到,获得积分20
7秒前
8秒前
10秒前
没食子酸完成签到,获得积分10
10秒前
11秒前
无极微光应助Jia采纳,获得20
12秒前
胡杨树2006完成签到,获得积分10
13秒前
fujun0095发布了新的文献求助10
14秒前
14秒前
14秒前
wxy发布了新的文献求助10
15秒前
zhaoyue完成签到 ,获得积分10
17秒前
科研狗的春天完成签到 ,获得积分10
18秒前
筷子夹豆腐脑完成签到,获得积分10
19秒前
19秒前
Jenny发布了新的文献求助10
20秒前
Estrella发布了新的文献求助10
20秒前
dandna完成签到 ,获得积分10
20秒前
晴心完成签到,获得积分10
24秒前
苹果鱼完成签到,获得积分10
25秒前
DD完成签到,获得积分10
25秒前
张二田发布了新的文献求助10
26秒前
tracer526发布了新的文献求助10
26秒前
萨尔莫斯发布了新的文献求助10
27秒前
32秒前
王佳俊完成签到,获得积分10
33秒前
33秒前
34秒前
Owen应助辜卅采纳,获得10
36秒前
36秒前
ding应助wxy采纳,获得10
42秒前
科研通AI6应助fujun0095采纳,获得10
48秒前
49秒前
萨尔莫斯发布了新的文献求助10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951