Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment

机器人 计算机科学 任务(项目管理) 拍卖算法 集合(抽象数据类型) 解算器 启发式 整数(计算机科学) 贪婪算法 算法 分布式算法 数学优化 分布式计算 人工智能 工程类 拍卖理论 共同价值拍卖 数学 统计 收入等值 系统工程 程序设计语言
作者
Xiaoshan Bai,Andrés Fielbaum,Maximilian Kronmüller,Luzia Knoedler,Javier Alonso–Mora
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1292-1303 被引量:11
标识
DOI:10.1109/tase.2022.3175040
摘要

This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity. Given a sufficiently large robot fleet, the objective is to minimize the robots’ total travel time to transport the packages within their respective time-window constraints. The problem is shown to be NP-hard, and we design two group-based distributed auction algorithms to solve this task assignment problem. Guided by the auction algorithms, robots first distributively calculate feasible package groups that they can serve, and then communicate to find an assignment of package groups. We quantify the potential of the algorithms with respect to the number of employed robots and the capacity of the robots by considering the robots’ total travel time to transport all packages. Simulation results show that the designed algorithms are competitive compared with an exact centralized Integer Linear Program representation solved with the commercial solver Gurobi, and superior to popular greedy algorithms and a heuristic distributed task allocation method. Note to Practitioners—This work presents two group-based distributed auction algorithms for a sufficiently large fleet of robots to efficiently transport a set of dynamically appearing dispersed packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity, and the objective is to minimize the robots’ total travel time to transport all the packages within the prescribed time-windows. The paper’s practical contributions are threefold: First, the multi-robot task assignment problem is formulated through a robot-group assignment strategy, which enables complex logistic scheduling for tasks grouped according to their distributions and time-windows. Second, we theoretically show that the multi-robot task assignment problem is an NP-hard problem, which implies the necessity for designing approximate task assignment algorithms. Third, the proposed group-based distributed auction algorithms are efficient and can be adapted for real scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助summer采纳,获得10
刚刚
刚刚
杨师傅完成签到 ,获得积分10
1秒前
惊涛骇浪发布了新的文献求助10
1秒前
苹果蜗牛完成签到 ,获得积分10
3秒前
啊o完成签到 ,获得积分10
3秒前
我吃柠檬发布了新的文献求助10
3秒前
小蘑菇应助甘乐采纳,获得10
3秒前
yy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
蔡龙杰完成签到,获得积分10
4秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
5秒前
YARA发布了新的文献求助10
5秒前
啾比文完成签到,获得积分10
5秒前
6秒前
green给green的求助进行了留言
7秒前
艾因兹怀斯完成签到,获得积分10
8秒前
黄院士发布了新的文献求助10
8秒前
9秒前
9秒前
田田完成签到 ,获得积分10
9秒前
June发布了新的文献求助30
9秒前
yjn完成签到,获得积分10
10秒前
Zhlili发布了新的文献求助20
10秒前
活泼忆丹完成签到,获得积分10
10秒前
11秒前
11秒前
玛卡发布了新的文献求助10
11秒前
12秒前
李伟完成签到,获得积分10
13秒前
jias发布了新的文献求助10
13秒前
李松林发布了新的文献求助10
14秒前
淡然的萝应助a3979107采纳,获得10
14秒前
李松林发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267