Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment

机器人 计算机科学 任务(项目管理) 拍卖算法 集合(抽象数据类型) 解算器 启发式 整数(计算机科学) 贪婪算法 算法 分布式算法 数学优化 分布式计算 人工智能 工程类 拍卖理论 共同价值拍卖 数学 统计 收入等值 系统工程 程序设计语言
作者
Xiaoshan Bai,Andrés Fielbaum,Maximilian Kronmüller,Luzia Knoedler,Javier Alonso–Mora
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1292-1303 被引量:11
标识
DOI:10.1109/tase.2022.3175040
摘要

This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity. Given a sufficiently large robot fleet, the objective is to minimize the robots’ total travel time to transport the packages within their respective time-window constraints. The problem is shown to be NP-hard, and we design two group-based distributed auction algorithms to solve this task assignment problem. Guided by the auction algorithms, robots first distributively calculate feasible package groups that they can serve, and then communicate to find an assignment of package groups. We quantify the potential of the algorithms with respect to the number of employed robots and the capacity of the robots by considering the robots’ total travel time to transport all packages. Simulation results show that the designed algorithms are competitive compared with an exact centralized Integer Linear Program representation solved with the commercial solver Gurobi, and superior to popular greedy algorithms and a heuristic distributed task allocation method. Note to Practitioners—This work presents two group-based distributed auction algorithms for a sufficiently large fleet of robots to efficiently transport a set of dynamically appearing dispersed packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity, and the objective is to minimize the robots’ total travel time to transport all the packages within the prescribed time-windows. The paper’s practical contributions are threefold: First, the multi-robot task assignment problem is formulated through a robot-group assignment strategy, which enables complex logistic scheduling for tasks grouped according to their distributions and time-windows. Second, we theoretically show that the multi-robot task assignment problem is an NP-hard problem, which implies the necessity for designing approximate task assignment algorithms. Third, the proposed group-based distributed auction algorithms are efficient and can be adapted for real scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hs完成签到,获得积分10
刚刚
薛之谦的猫应助黎书禾采纳,获得10
1秒前
2秒前
隐形曼青应助olekravchenko采纳,获得10
2秒前
3秒前
MAK完成签到,获得积分10
3秒前
彩色芷完成签到,获得积分10
4秒前
低空飞行发布了新的文献求助10
4秒前
Greyson完成签到 ,获得积分10
4秒前
静候佳音完成签到 ,获得积分10
5秒前
dxm发布了新的文献求助10
6秒前
dxszing完成签到 ,获得积分10
6秒前
相约在天边完成签到,获得积分10
6秒前
jialin发布了新的文献求助10
7秒前
思源应助刘奇采纳,获得10
7秒前
coast发布了新的文献求助10
7秒前
理想完成签到,获得积分10
8秒前
8秒前
10秒前
polarisier发布了新的文献求助10
10秒前
11秒前
12秒前
慕青应助dxm采纳,获得10
12秒前
Cyber_relic完成签到,获得积分10
13秒前
ding完成签到,获得积分10
13秒前
13秒前
14秒前
酷波er应助coast采纳,获得10
15秒前
15秒前
文文发布了新的文献求助10
17秒前
南门完成签到,获得积分10
17秒前
温以凡发布了新的文献求助10
17秒前
科研通AI6应助机灵铭采纳,获得10
17秒前
文静的炳发布了新的文献求助10
17秒前
18秒前
熊小兰发布了新的文献求助10
18秒前
djbj2022完成签到,获得积分10
18秒前
慕青应助hhh采纳,获得10
19秒前
韩立发布了新的文献求助10
19秒前
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930