Motion intention prediction of upper limb in stroke survivors using sEMG signal and attention mechanism

机制(生物学) 计算机科学 运动(物理) 信号(编程语言) 物理医学与康复 冲程(发动机) 人工智能 医学 物理 量子力学 热力学 程序设计语言
作者
Juncheng Li,Liang Tao,Ziniu Zeng,Pengpeng Xu,Yan Chen,Zhaoqi Guo,Zhenhong Liang,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103981-103981 被引量:1
标识
DOI:10.1016/j.bspc.2022.103981
摘要

• We further explain the used data sets and the principle and function of T-SNE. • We further explain the method to solve the over fitting issue. • We retested the effectiveness of the model with a separate independent test set. • We calculate the time complexity of the model and examine the effectiveness of the proposed model. • We added a comparison analysis of the three models in the discussion section. The upper limb movement of stroke survivors has strong specificity and involuntary activation of muscles and other non-ideal factors. The prediction method suitable for healthy people often declines accuracy when applied to stroke survivors. The precise perception of the patient's motion intention is helpful for the patient to use the rehabilitation robot for rehabilitation training. Current research focuses on data acquisition, preprocessing, feature extraction, and classifier selection. Some researchers have proposed effective methods, but they have disadvantages such as complexity, high cost, and low generalization. In this paper, we proposed a new solution to the problem of significant interference of patients' sEMG data: (i) Embedding the attention mechanism into the deep residual network so that the attention module can entirely focus on the key features to improve the network's learning ability of features. (ii) The soft thresholding module is embedded into the deep residual network as a building unit, and the threshold is automatically set to eliminate the interfering noise. We designed an experiment to acquire sEMG signals from eight muscles of ten patients during six preset movements and adopted a 10-fold cross-validation method to verify the feasibility of the proposed method. The length of the data processing window, the prediction accuracy of different movements, and various models' classification effect are compared. The results show that compared with ResNet (average accuracy = 84.94 %) and CNN (average accuracy = 78.47 %), the proposed method has higher classification accuracy, with an average accuracy of 93.11 %, which proves the feasibility of the proposed method. This study can be applied to improve the efficiency of rehabilitation training for stroke survivors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助小黑哥采纳,获得10
1秒前
隐形曼青应助mj789采纳,获得10
1秒前
文静千凡发布了新的文献求助10
2秒前
2秒前
朴素树叶完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
liy41完成签到 ,获得积分10
5秒前
kaka发布了新的文献求助10
5秒前
在学一会完成签到,获得积分10
5秒前
嘉敏发布了新的文献求助10
6秒前
6秒前
京言完成签到,获得积分10
7秒前
阿伦完成签到,获得积分10
7秒前
淳于语海完成签到 ,获得积分10
7秒前
小威完成签到,获得积分10
7秒前
小小发布了新的文献求助10
8秒前
火炎焱燚完成签到,获得积分10
8秒前
9秒前
甜蜜寄文完成签到 ,获得积分10
9秒前
seven完成签到,获得积分10
9秒前
9秒前
159发布了新的文献求助10
9秒前
丁仪发布了新的文献求助10
9秒前
FashionBoy应助枫花雪采纳,获得10
10秒前
xxxx发布了新的文献求助10
10秒前
katrina应助seven采纳,获得10
12秒前
RebeccaHe应助qaz123采纳,获得10
12秒前
Nacsion发布了新的文献求助10
12秒前
暴躁的问兰完成签到 ,获得积分10
12秒前
weixin112233发布了新的文献求助30
13秒前
Patrick完成签到,获得积分10
13秒前
Chaiyuan完成签到 ,获得积分10
13秒前
lucky完成签到 ,获得积分10
14秒前
禾页完成签到 ,获得积分10
14秒前
jhwxy完成签到 ,获得积分10
14秒前
15秒前
黄老师关注了科研通微信公众号
15秒前
Tilly发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303593
求助须知:如何正确求助?哪些是违规求助? 2937893
关于积分的说明 8484865
捐赠科研通 2611823
什么是DOI,文献DOI怎么找? 1426334
科研通“疑难数据库(出版商)”最低求助积分说明 662567
邀请新用户注册赠送积分活动 647118