Motion intention prediction of upper limb in stroke survivors using sEMG signal and attention mechanism

机制(生物学) 计算机科学 运动(物理) 信号(编程语言) 物理医学与康复 冲程(发动机) 人工智能 医学 物理 量子力学 热力学 程序设计语言
作者
Juncheng Li,Liang Tao,Ziniu Zeng,Pengpeng Xu,Yan Chen,Zhaoqi Guo,Zhenhong Liang,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103981-103981 被引量:1
标识
DOI:10.1016/j.bspc.2022.103981
摘要

• We further explain the used data sets and the principle and function of T-SNE. • We further explain the method to solve the over fitting issue. • We retested the effectiveness of the model with a separate independent test set. • We calculate the time complexity of the model and examine the effectiveness of the proposed model. • We added a comparison analysis of the three models in the discussion section. The upper limb movement of stroke survivors has strong specificity and involuntary activation of muscles and other non-ideal factors. The prediction method suitable for healthy people often declines accuracy when applied to stroke survivors. The precise perception of the patient's motion intention is helpful for the patient to use the rehabilitation robot for rehabilitation training. Current research focuses on data acquisition, preprocessing, feature extraction, and classifier selection. Some researchers have proposed effective methods, but they have disadvantages such as complexity, high cost, and low generalization. In this paper, we proposed a new solution to the problem of significant interference of patients' sEMG data: (i) Embedding the attention mechanism into the deep residual network so that the attention module can entirely focus on the key features to improve the network's learning ability of features. (ii) The soft thresholding module is embedded into the deep residual network as a building unit, and the threshold is automatically set to eliminate the interfering noise. We designed an experiment to acquire sEMG signals from eight muscles of ten patients during six preset movements and adopted a 10-fold cross-validation method to verify the feasibility of the proposed method. The length of the data processing window, the prediction accuracy of different movements, and various models' classification effect are compared. The results show that compared with ResNet (average accuracy = 84.94 %) and CNN (average accuracy = 78.47 %), the proposed method has higher classification accuracy, with an average accuracy of 93.11 %, which proves the feasibility of the proposed method. This study can be applied to improve the efficiency of rehabilitation training for stroke survivors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助舒服的尔丝采纳,获得10
刚刚
小劳完成签到,获得积分10
刚刚
儒雅的过客完成签到,获得积分10
1秒前
仲夏完成签到,获得积分10
1秒前
拿捏陕科大完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
大壮完成签到,获得积分10
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
ZhaohuaXie应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
NameCYQ完成签到,获得积分10
3秒前
深情安青应助111采纳,获得10
3秒前
Thien应助科研通管家采纳,获得20
3秒前
英俊的铭应助科研通管家采纳,获得20
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zzl发布了新的文献求助10
3秒前
4秒前
菜鸡完成签到,获得积分10
4秒前
4秒前
Kelly完成签到,获得积分10
4秒前
星辰大海应助佳佳爱学习采纳,获得10
4秒前
胡辣椒麻鸡完成签到,获得积分10
4秒前
4秒前
李爱国应助高调的摆酒人采纳,获得10
5秒前
5秒前
可口可乐完成签到,获得积分10
5秒前
Zzzz完成签到,获得积分10
5秒前
shenya0810应助livra1058采纳,获得10
5秒前
粉嘟嘟loved完成签到,获得积分10
5秒前
杨杨完成签到,获得积分10
6秒前
无敌OUT曼完成签到,获得积分10
6秒前
奶瓶守护者完成签到 ,获得积分10
6秒前
jade257完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632