Motion intention prediction of upper limb in stroke survivors using sEMG signal and attention mechanism

机制(生物学) 计算机科学 运动(物理) 信号(编程语言) 物理医学与康复 冲程(发动机) 人工智能 医学 物理 量子力学 热力学 程序设计语言
作者
Juncheng Li,Liang Tao,Ziniu Zeng,Pengpeng Xu,Yan Chen,Zhaoqi Guo,Zhenhong Liang,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103981-103981 被引量:1
标识
DOI:10.1016/j.bspc.2022.103981
摘要

• We further explain the used data sets and the principle and function of T-SNE. • We further explain the method to solve the over fitting issue. • We retested the effectiveness of the model with a separate independent test set. • We calculate the time complexity of the model and examine the effectiveness of the proposed model. • We added a comparison analysis of the three models in the discussion section. The upper limb movement of stroke survivors has strong specificity and involuntary activation of muscles and other non-ideal factors. The prediction method suitable for healthy people often declines accuracy when applied to stroke survivors. The precise perception of the patient's motion intention is helpful for the patient to use the rehabilitation robot for rehabilitation training. Current research focuses on data acquisition, preprocessing, feature extraction, and classifier selection. Some researchers have proposed effective methods, but they have disadvantages such as complexity, high cost, and low generalization. In this paper, we proposed a new solution to the problem of significant interference of patients' sEMG data: (i) Embedding the attention mechanism into the deep residual network so that the attention module can entirely focus on the key features to improve the network's learning ability of features. (ii) The soft thresholding module is embedded into the deep residual network as a building unit, and the threshold is automatically set to eliminate the interfering noise. We designed an experiment to acquire sEMG signals from eight muscles of ten patients during six preset movements and adopted a 10-fold cross-validation method to verify the feasibility of the proposed method. The length of the data processing window, the prediction accuracy of different movements, and various models' classification effect are compared. The results show that compared with ResNet (average accuracy = 84.94 %) and CNN (average accuracy = 78.47 %), the proposed method has higher classification accuracy, with an average accuracy of 93.11 %, which proves the feasibility of the proposed method. This study can be applied to improve the efficiency of rehabilitation training for stroke survivors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖的南霜完成签到,获得积分10
刚刚
宋世伟发布了新的文献求助10
刚刚
CipherSage应助雨濛濛采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
青鸢完成签到,获得积分20
2秒前
princesun083完成签到,获得积分10
2秒前
大气思柔发布了新的文献求助10
2秒前
坚定的剑心完成签到,获得积分10
3秒前
3秒前
李萍萍完成签到,获得积分10
3秒前
乖拉完成签到,获得积分10
3秒前
4秒前
4秒前
rtaxa完成签到,获得积分0
5秒前
ZLX完成签到,获得积分10
5秒前
冯蜜柚子茶完成签到,获得积分10
5秒前
不可思宇发布了新的文献求助10
5秒前
L.C.发布了新的文献求助10
5秒前
俏皮的馒头完成签到,获得积分10
5秒前
5秒前
愤怒的无施完成签到,获得积分10
6秒前
lololoan发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助10
6秒前
科研通AI6应助XuLinan采纳,获得10
7秒前
ceeray23发布了新的文献求助20
7秒前
7秒前
qfgp发布了新的文献求助10
8秒前
8秒前
然来溪完成签到 ,获得积分10
8秒前
8秒前
9秒前
sswbzh应助24豆采纳,获得100
9秒前
9秒前
伶俐乌发布了新的文献求助10
9秒前
feng1235发布了新的文献求助10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297