亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Motion intention prediction of upper limb in stroke survivors using sEMG signal and attention mechanism

机制(生物学) 计算机科学 运动(物理) 信号(编程语言) 物理医学与康复 冲程(发动机) 人工智能 医学 物理 量子力学 热力学 程序设计语言
作者
Juncheng Li,Liang Tao,Ziniu Zeng,Pengpeng Xu,Yan Chen,Zhaoqi Guo,Zhenhong Liang,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103981-103981 被引量:1
标识
DOI:10.1016/j.bspc.2022.103981
摘要

• We further explain the used data sets and the principle and function of T-SNE. • We further explain the method to solve the over fitting issue. • We retested the effectiveness of the model with a separate independent test set. • We calculate the time complexity of the model and examine the effectiveness of the proposed model. • We added a comparison analysis of the three models in the discussion section. The upper limb movement of stroke survivors has strong specificity and involuntary activation of muscles and other non-ideal factors. The prediction method suitable for healthy people often declines accuracy when applied to stroke survivors. The precise perception of the patient's motion intention is helpful for the patient to use the rehabilitation robot for rehabilitation training. Current research focuses on data acquisition, preprocessing, feature extraction, and classifier selection. Some researchers have proposed effective methods, but they have disadvantages such as complexity, high cost, and low generalization. In this paper, we proposed a new solution to the problem of significant interference of patients' sEMG data: (i) Embedding the attention mechanism into the deep residual network so that the attention module can entirely focus on the key features to improve the network's learning ability of features. (ii) The soft thresholding module is embedded into the deep residual network as a building unit, and the threshold is automatically set to eliminate the interfering noise. We designed an experiment to acquire sEMG signals from eight muscles of ten patients during six preset movements and adopted a 10-fold cross-validation method to verify the feasibility of the proposed method. The length of the data processing window, the prediction accuracy of different movements, and various models' classification effect are compared. The results show that compared with ResNet (average accuracy = 84.94 %) and CNN (average accuracy = 78.47 %), the proposed method has higher classification accuracy, with an average accuracy of 93.11 %, which proves the feasibility of the proposed method. This study can be applied to improve the efficiency of rehabilitation training for stroke survivors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何江海完成签到 ,获得积分10
2秒前
陌墨完成签到 ,获得积分10
5秒前
蜗牛完成签到,获得积分20
9秒前
9秒前
于富强发布了新的文献求助10
27秒前
Akim应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
清飏应助科研通管家采纳,获得10
29秒前
阿布应助科研通管家采纳,获得10
29秒前
jy发布了新的文献求助10
30秒前
摸鱼大王完成签到 ,获得积分10
31秒前
Tendency完成签到 ,获得积分10
33秒前
33秒前
34秒前
jy完成签到,获得积分10
39秒前
大模型应助吉吉急急急采纳,获得10
45秒前
47秒前
UU完成签到,获得积分10
50秒前
调皮醉波完成签到 ,获得积分10
54秒前
Jamesliu完成签到,获得积分10
54秒前
闪闪的晓丝完成签到 ,获得积分10
55秒前
neao完成签到 ,获得积分10
58秒前
1分钟前
哩哩完成签到 ,获得积分10
1分钟前
zpmz完成签到 ,获得积分10
1分钟前
Criminology34举报11求助涉嫌违规
1分钟前
1分钟前
dywen完成签到,获得积分10
1分钟前
科研q完成签到 ,获得积分10
1分钟前
DrW完成签到,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分20
1分钟前
1分钟前
Jasper应助秋浱采纳,获得10
1分钟前
英姑应助王小帅ok采纳,获得10
1分钟前
1分钟前
自由念露完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634505
求助须知:如何正确求助?哪些是违规求助? 4731494
关于积分的说明 14988674
捐赠科研通 4792284
什么是DOI,文献DOI怎么找? 2559447
邀请新用户注册赠送积分活动 1519756
关于科研通互助平台的介绍 1479875