Algorithms, leadership, and morality: why a mere human effect drives the preference for human over algorithmic leadership

声誉 危害 感知 偏爱 道德 集合(抽象数据类型) 现象 心理学 社会心理学 公共关系 政治学 计算机科学 认识论 经济 法学 微观经济学 神经科学 程序设计语言 哲学
作者
Jack McGuire,David De Cremer
出处
期刊:AI and ethics [Springer Nature]
卷期号:3 (2): 601-618 被引量:9
标识
DOI:10.1007/s43681-022-00192-2
摘要

Algorithms are increasingly making decisions in organizations that carry moral consequences and such decisions are considered to be ordinarily made by leaders. An important consideration to be made by organizations is therefore whether adopting algorithms in this domain will be accepted by employees and whether this practice will harm their reputation. Considering this emergent phenomenon, we set out to examine employees’ perceptions about (a) algorithmic decision-making systems employed to occupy leadership roles and make moral decisions in organizations, and (b) the reputation of organizations that employ such systems. Furthermore, we examine the extent to which the decision agent needs to be recognized as “merely” a human, or whether more information is needed about the decision agent’s moral values (in this case, whether it is known that the human leader is humble or not) to be preferred over an algorithm. Our results reveal that participants in the algorithmic leader condition—relative to those in the human leader and humble human leader conditions—perceive the decision made to be less fair, trustworthy, and legitimate, and this in turn produces lower acceptance rates of the decision and more negative perceptions of the organization’s reputation. The human leader and humble human leader conditions do not significantly differ across all main and indirect effects. This latter effect strongly suggests that people prefer human (vs. algorithmic) leadership primarily because they are human and not necessarily because they possess certain moral values. Implications for theory, practice, and directions for future research are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shd-fufa完成签到,获得积分10
刚刚
小马甲应助贰陆采纳,获得10
1秒前
3秒前
haifang发布了新的文献求助10
3秒前
3秒前
3秒前
王璐发布了新的文献求助10
4秒前
shd-fufa发布了新的文献求助10
4秒前
5秒前
shan完成签到,获得积分10
6秒前
stories完成签到,获得积分20
6秒前
王英俊完成签到,获得积分10
7秒前
虚幻伯云发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
赘婿应助KhalilHao采纳,获得10
9秒前
江峰发布了新的文献求助10
10秒前
11秒前
Natasha发布了新的文献求助10
12秒前
12秒前
黄大师发布了新的文献求助10
12秒前
wrb发布了新的文献求助10
13秒前
虚幻伯云完成签到,获得积分20
14秒前
15秒前
王璐完成签到,获得积分10
15秒前
思源应助随便采纳,获得10
15秒前
16秒前
16秒前
咸鱼一号完成签到,获得积分10
16秒前
16秒前
韭菜盒子发布了新的文献求助10
16秒前
16秒前
完美的以寒完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
SGOM发布了新的文献求助10
20秒前
黄大师完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721