TOF-UNet: High-precision method for terry towel defect detection

计算机科学 联营 保险丝(电气) 人工智能 分割 交叉熵 掷骰子 棱锥(几何) 模式识别(心理学) 目标检测 特征提取 计算机视觉 数学 工程类 统计 电气工程 几何学
作者
Jinzhuang Xiao,Huihui Guo,Ning Wang
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (3-4): 925-935 被引量:2
标识
DOI:10.1177/00405175221112655
摘要

Towel defect detection mostly relies on manual labor, but there are problems such as a low efficiency and high missed detection rate. Therefore, automatic detection of towel defects is becoming increasingly popular. Although the UNet-based method has been successful, there are problems that must be solved for practical applications. To address the problems of the complex background caused by loops on the towel surface, relatively small defect size, and imbalanced defect–background ratio, a high-precision convolutional neural network is proposed, which is called tiny object-focused UNet. A coordinate attention mechanism is introduced in tiny object-focused UNet to enhance the feature-extraction capabilities, and spatial pyramid pooling is employed to fuse local and global information for more accurately extraction of towel defect features. Finally, the composite loss function obtained via the addition of the cross-entropy loss and the Dice loss function is used to reduce the impact of the imbalance in the proportion of defects on the detection accuracy. The proposed model is evaluated using a self-made dataset. The experimental results indicate that the segmentation performance of the network is better than that of other networks. Thus, the proposed method is useful for segmenting towel defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
朱大头发布了新的文献求助30
1秒前
标致诗蕾完成签到,获得积分10
1秒前
LiZhenhua发布了新的文献求助10
2秒前
Ava应助ihtw采纳,获得10
3秒前
3秒前
豆包完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
蓝天白云发布了新的文献求助10
5秒前
华仔应助343386625采纳,获得10
6秒前
6秒前
smy发布了新的文献求助10
6秒前
LEMONS应助rktrain2023采纳,获得10
7秒前
两只老虎发布了新的文献求助10
8秒前
李某人发布了新的文献求助20
8秒前
懵懂的土豆完成签到,获得积分10
9秒前
9秒前
10秒前
幸福萝发布了新的文献求助10
10秒前
10秒前
元谷雪发布了新的文献求助10
11秒前
vvan完成签到,获得积分10
11秒前
chenshen完成签到,获得积分10
11秒前
酷酷王安安完成签到 ,获得积分10
12秒前
ELITOmiko完成签到,获得积分10
12秒前
111完成签到,获得积分20
12秒前
Bellamie完成签到 ,获得积分20
12秒前
小马甲应助桃子e采纳,获得10
12秒前
HPP123完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
smy完成签到,获得积分10
13秒前
lewis17发布了新的文献求助10
13秒前
奔流的河发布了新的文献求助10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500212
关于积分的说明 11098471
捐赠科研通 3230734
什么是DOI,文献DOI怎么找? 1786110
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801625