Quantum machine learning for chemistry and physics

计算机科学 人工智能 机器学习 量子机器学习 量子 数据科学 量子计算机 物理 量子力学
作者
Manas Sajjan,Junxu Li,Raja Selvarajan,Shree Hari Sureshbabu,Sumit Suresh Kale,Rishabh Gupta,Vinit Kumar Singh,Sabre Kais
出处
期刊:Chemical Society Reviews [The Royal Society of Chemistry]
卷期号:51 (15): 6475-6573 被引量:38
标识
DOI:10.1039/d2cs00203e
摘要

Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes. Such algorithms have revolutionized materials design and performance of photovoltaics, electronic structure calculations of ground and excited states of correlated matter, computation of force-fields and potential energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing and even classification of phases of matter with accurate identification of emergent criticality. In this review we shall explicate a subset of such topics and delineate the contributions made by both classical and quantum computing enhanced machine learning algorithms over the past few years. We shall not only present a brief overview of the well-known techniques but also highlight their learning strategies using statistical physical insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to empower and promote cross-pollination among future research in all areas of chemistry which can benefit from ML and in turn can potentially accelerate the growth of such algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
领导范儿应助good慧采纳,获得10
2秒前
yiriaoxianyu发布了新的文献求助10
2秒前
deletelzr完成签到,获得积分10
2秒前
xsk861777发布了新的文献求助10
3秒前
3秒前
时尚的雁易完成签到,获得积分10
3秒前
NexusExplorer应助lll采纳,获得10
4秒前
CodeCraft应助郭郭郭采纳,获得10
5秒前
ZHANG发布了新的文献求助30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
chemj关注了科研通微信公众号
7秒前
Orange应助xsk861777采纳,获得10
7秒前
Plusonezzz完成签到,获得积分20
7秒前
田様应助YOUNG-M采纳,获得10
8秒前
zhangguo发布了新的文献求助10
9秒前
苹果千筹完成签到,获得积分10
9秒前
蛋筒发布了新的文献求助10
11秒前
浮游应助Plusonezzz采纳,获得10
12秒前
orixero应助薏_采纳,获得10
12秒前
13秒前
13秒前
wanci应助pan采纳,获得10
13秒前
斯文败类应助耍酷的雅阳采纳,获得20
13秒前
科研通AI2S应助Sara采纳,获得10
14秒前
14秒前
15秒前
杨杨杨发布了新的文献求助10
17秒前
lll发布了新的文献求助10
18秒前
MJJJ完成签到,获得积分10
18秒前
nana发布了新的文献求助10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617