Quantum machine learning for chemistry and physics

计算机科学 人工智能 机器学习 量子机器学习 量子 数据科学 量子计算机 物理 量子力学
作者
Manas Sajjan,Junxu Li,Raja Selvarajan,Shree Hari Sureshbabu,Sumit Suresh Kale,Rishabh Gupta,Vinit Kumar Singh,Sabre Kais
出处
期刊:Chemical Society Reviews [Royal Society of Chemistry]
卷期号:51 (15): 6475-6573 被引量:38
标识
DOI:10.1039/d2cs00203e
摘要

Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes. Such algorithms have revolutionized materials design and performance of photovoltaics, electronic structure calculations of ground and excited states of correlated matter, computation of force-fields and potential energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing and even classification of phases of matter with accurate identification of emergent criticality. In this review we shall explicate a subset of such topics and delineate the contributions made by both classical and quantum computing enhanced machine learning algorithms over the past few years. We shall not only present a brief overview of the well-known techniques but also highlight their learning strategies using statistical physical insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to empower and promote cross-pollination among future research in all areas of chemistry which can benefit from ML and in turn can potentially accelerate the growth of such algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助外向宛菡采纳,获得10
3秒前
3秒前
3秒前
危机的井发布了新的文献求助10
4秒前
4秒前
长孙巧凡完成签到,获得积分0
4秒前
4秒前
热心醉蝶完成签到,获得积分10
5秒前
SL发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
Leon发布了新的文献求助10
9秒前
124578发布了新的文献求助10
10秒前
哈哈哈发布了新的文献求助10
10秒前
小卜发布了新的文献求助10
11秒前
小蒋发布了新的文献求助10
11秒前
宝宝完成签到 ,获得积分10
12秒前
蜀黍完成签到 ,获得积分10
12秒前
pengzzZZ发布了新的文献求助10
12秒前
英俊的铭应助呆呆采纳,获得10
13秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
柯一一应助不要辣椒采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
在水一方应助好运莲莲采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
15秒前
Liu完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232