Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques

面神经 背景(考古学) 支持向量机 听神经瘤 医学 人工智能 计算机科学 外科 生物 古生物学
作者
Jianbo Wang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:19 (10): 10407-10423 被引量:7
标识
DOI:10.3934/mbe.2022487
摘要

Acoustic neuroma is a common benign tumor that is frequently associated with postoperative complications such as facial nerve dysfunction, which greatly affects the physical and mental health of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent variables are identified based on clinical context and data characteristics. Secondly, data balancing is corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction model for patients' postoperative recovery, and is also compared with a total of four machine learning models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART, RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic assistance to physicians, thereby improving the patient's postoperative recovery. The results show that machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
moyan完成签到 ,获得积分10
刚刚
万能图书馆应助BB采纳,获得10
1秒前
1秒前
2秒前
Fred发布了新的文献求助10
2秒前
NexusExplorer应助jzy采纳,获得10
2秒前
科龙发布了新的文献求助10
3秒前
王娜发布了新的文献求助10
3秒前
SWZ完成签到,获得积分10
4秒前
牛马研究生完成签到,获得积分10
5秒前
5秒前
曾经书翠完成签到,获得积分20
6秒前
烟花应助小郑开心努力采纳,获得10
7秒前
7秒前
微笑立轩完成签到,获得积分10
8秒前
SWZ发布了新的文献求助100
8秒前
11秒前
方远锋完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
发发发完成签到 ,获得积分10
14秒前
今后应助SJ_Wang采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
斯文的飞雪完成签到,获得积分10
16秒前
啊啊发布了新的文献求助10
16秒前
SCI发发发发布了新的文献求助10
17秒前
徐徐完成签到,获得积分10
18秒前
18秒前
阿洁发布了新的文献求助10
18秒前
执着雪青应助海拾月采纳,获得10
18秒前
h123123发布了新的文献求助10
19秒前
情怀应助学术蟑螂采纳,获得10
20秒前
20秒前
研友_enP05n发布了新的文献求助10
21秒前
昀松完成签到,获得积分10
22秒前
onlyan发布了新的文献求助20
23秒前
络梦摘星辰完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019