Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques

面神经 背景(考古学) 支持向量机 听神经瘤 医学 人工智能 计算机科学 外科 生物 古生物学
作者
Jianbo Wang
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:19 (10): 10407-10423 被引量:7
标识
DOI:10.3934/mbe.2022487
摘要

Acoustic neuroma is a common benign tumor that is frequently associated with postoperative complications such as facial nerve dysfunction, which greatly affects the physical and mental health of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent variables are identified based on clinical context and data characteristics. Secondly, data balancing is corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction model for patients' postoperative recovery, and is also compared with a total of four machine learning models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART, RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic assistance to physicians, thereby improving the patient's postoperative recovery. The results show that machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ew.完成签到,获得积分10
刚刚
1秒前
小羊咩咩咩完成签到,获得积分10
1秒前
2秒前
2秒前
pzw完成签到,获得积分10
2秒前
科目三应助奶桃七七采纳,获得10
2秒前
cuijiawen发布了新的文献求助10
2秒前
在水一方应助Fishball采纳,获得10
3秒前
3秒前
SepChopin完成签到,获得积分10
3秒前
4秒前
别太可爱发布了新的文献求助10
4秒前
eli完成签到,获得积分10
4秒前
5秒前
小九发布了新的文献求助10
5秒前
共享精神应助可靠的芒果采纳,获得10
5秒前
quan完成签到 ,获得积分10
5秒前
打打应助开心的夏蓉采纳,获得10
5秒前
cc完成签到,获得积分20
5秒前
无花果应助拄着拐棍跳舞采纳,获得10
5秒前
6秒前
从容的威发布了新的文献求助30
6秒前
6秒前
华仔应助单薄惜梦采纳,获得10
6秒前
高高发布了新的文献求助10
7秒前
跳跃仙人掌应助Sledge采纳,获得200
7秒前
Cupid完成签到,获得积分10
7秒前
7秒前
8秒前
台台发布了新的文献求助10
8秒前
XY完成签到,获得积分10
8秒前
Zhenhao发布了新的文献求助10
9秒前
9秒前
我是老大应助包容怜烟采纳,获得10
10秒前
10秒前
Spirit发布了新的文献求助10
10秒前
10秒前
11秒前
Zzz完成签到 ,获得积分10
11秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220636
求助须知:如何正确求助?哪些是违规求助? 2869308
关于积分的说明 8165363
捐赠科研通 2536122
什么是DOI,文献DOI怎么找? 1368656
科研通“疑难数据库(出版商)”最低求助积分说明 645253
邀请新用户注册赠送积分活动 618820