已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques

面神经 背景(考古学) 支持向量机 听神经瘤 医学 人工智能 计算机科学 外科 生物 古生物学
作者
Jianbo Wang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:19 (10): 10407-10423 被引量:7
标识
DOI:10.3934/mbe.2022487
摘要

Acoustic neuroma is a common benign tumor that is frequently associated with postoperative complications such as facial nerve dysfunction, which greatly affects the physical and mental health of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent variables are identified based on clinical context and data characteristics. Secondly, data balancing is corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction model for patients' postoperative recovery, and is also compared with a total of four machine learning models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART, RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic assistance to physicians, thereby improving the patient's postoperative recovery. The results show that machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸落Oo发布了新的文献求助10
1秒前
2秒前
关我屁事完成签到 ,获得积分10
2秒前
叮当完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
liu完成签到,获得积分10
5秒前
5秒前
小悦子完成签到,获得积分10
6秒前
kky完成签到,获得积分10
6秒前
搜集达人应助差不多先生采纳,获得10
7秒前
竹斟酒完成签到,获得积分10
8秒前
561发布了新的文献求助10
8秒前
好结局发布了新的文献求助10
8秒前
卡卡罗特发布了新的文献求助10
8秒前
明亮的涵山完成签到,获得积分20
8秒前
番茄酱发布了新的文献求助10
9秒前
MyAI发布了新的文献求助10
11秒前
居蓝完成签到 ,获得积分10
11秒前
12秒前
12秒前
wanci应助熊啊采纳,获得10
15秒前
15秒前
脑洞疼应助好结局采纳,获得10
16秒前
王晓卉完成签到 ,获得积分10
16秒前
爆米花应助番茄酱采纳,获得10
16秒前
16秒前
zhangsenbing发布了新的文献求助20
17秒前
嘿嘿发布了新的文献求助10
18秒前
科研小王子完成签到,获得积分20
18秒前
19秒前
周肆完成签到 ,获得积分10
23秒前
23秒前
24秒前
ZJX应助变化是永恒的采纳,获得10
24秒前
25秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396