Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques

面神经 背景(考古学) 支持向量机 听神经瘤 医学 人工智能 计算机科学 外科 生物 古生物学
作者
Jianbo Wang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:19 (10): 10407-10423 被引量:7
标识
DOI:10.3934/mbe.2022487
摘要

Acoustic neuroma is a common benign tumor that is frequently associated with postoperative complications such as facial nerve dysfunction, which greatly affects the physical and mental health of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent variables are identified based on clinical context and data characteristics. Secondly, data balancing is corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction model for patients' postoperative recovery, and is also compared with a total of four machine learning models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART, RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic assistance to physicians, thereby improving the patient's postoperative recovery. The results show that machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柚子街发布了新的文献求助10
2秒前
浮游应助springwyc采纳,获得10
2秒前
3秒前
3秒前
星星燃烧着完成签到,获得积分10
3秒前
6加x完成签到 ,获得积分10
4秒前
niuge02完成签到,获得积分10
5秒前
鱼儿游啊游完成签到,获得积分10
5秒前
临澈发布了新的文献求助20
6秒前
9秒前
xiaolanou发布了新的文献求助10
9秒前
sunyt完成签到,获得积分10
10秒前
所所应助威武的橘子采纳,获得10
11秒前
科研小白兔完成签到,获得积分10
11秒前
paopao发布了新的文献求助10
11秒前
JJbond发布了新的文献求助30
11秒前
12秒前
12秒前
Zuozhengfen完成签到 ,获得积分10
12秒前
一只盒子完成签到,获得积分10
14秒前
14秒前
浮游应助HCT采纳,获得10
14秒前
11发布了新的文献求助10
15秒前
充电宝应助眼睛大以寒采纳,获得10
15秒前
柚子街完成签到,获得积分10
16秒前
一只小西瓜完成签到 ,获得积分10
16秒前
18秒前
酷炫的幻丝完成签到 ,获得积分10
18秒前
WanPeng发布了新的文献求助10
18秒前
上官若男应助shuishui采纳,获得10
18秒前
276860发布了新的文献求助10
19秒前
威武的橘子完成签到,获得积分10
20秒前
21秒前
silsotiscolor发布了新的文献求助10
22秒前
失眠的凡阳完成签到,获得积分10
23秒前
FashionBoy应助浅夏初晴采纳,获得10
23秒前
慕青应助111采纳,获得10
24秒前
达助完成签到,获得积分10
24秒前
wang发布了新的文献求助10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208665
求助须知:如何正确求助?哪些是违规求助? 4386064
关于积分的说明 13659715
捐赠科研通 4245076
什么是DOI,文献DOI怎么找? 2329120
邀请新用户注册赠送积分活动 1326906
关于科研通互助平台的介绍 1279163