TopoCut

计算机科学 稳健性(进化) 几何处理 拓扑(电路) 算法 计算 可视化 网格生成 多边形网格 数学 数学优化 理论计算机科学 人工智能 有限元法 计算机图形学(图像) 组合数学 热力学 基因 物理 生物化学 化学
作者
Xianzhong Fang,Mathieu Desbrun,Hujun Bao,Jin Huang
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (4): 1-15 被引量:7
标识
DOI:10.1145/3528223.3530149
摘要

Given a complex three-dimensional domain delimited by a closed and non-degenerate input triangle mesh without any self-intersection, a common geometry processing task consists in cutting up the domain into cells through a set of planar cuts, creating a "cut-cell mesh", i.e., a volumetric decomposition of the domain amenable to visualization (e.g., exploded views), animation (e.g., virtual surgery), or simulation (finite volume computations). A large number of methods have proposed either efficient or robust solutions, sometimes restricting the cuts to form a regular or adaptive grid for simplicity; yet, none can guarantee both properties, severely limiting their usefulness in practice. At the core of the difficulty is the determination of topological relationships among large numbers of vertices, edges, faces and cells in order to assemble a proper cut-cell mesh: while exact geometric computations provide a robust solution to this issue, their high computational cost has prompted a number of faster solutions based on, e.g., local floating-point angle sorting to significantly accelerate the process --- but losing robustness in doing so. In this paper, we introduce a new approach to planar cutting of 3D domains that substitutes topological inference for numerical ordering through a novel mesh data structure, and revert to exact numerical evaluations only in the few rare cases where it is strictly necessary. We show that our novel concept of topological cuts exploits the inherent structure of cut-cell mesh generation to save computational time while still guaranteeing exactness for, and robustness to, arbitrary cuts and surface geometry. We demonstrate the superiority of our approach over state-of-the-art methods on almost 10,000 meshes with a wide range of geometric and topological complexity. We also provide an open source implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CikY完成签到,获得积分10
刚刚
lelehanhan完成签到,获得积分10
1秒前
小乖发布了新的文献求助10
1秒前
jiaqiao完成签到,获得积分10
1秒前
1秒前
WENc发布了新的文献求助10
2秒前
2秒前
2秒前
田雪发布了新的文献求助10
3秒前
3秒前
寂寞的迎天完成签到,获得积分10
3秒前
YYYY完成签到,获得积分10
3秒前
3秒前
初染完成签到,获得积分10
3秒前
山头虎发布了新的文献求助100
3秒前
阮通完成签到 ,获得积分10
3秒前
CipherSage应助zpctx采纳,获得10
3秒前
4秒前
何文完成签到,获得积分10
4秒前
爱吃的月半猫完成签到,获得积分10
4秒前
4秒前
今后应助辛勤采柳采纳,获得10
4秒前
ks_Mo发布了新的文献求助10
4秒前
Hvgh发布了新的文献求助10
4秒前
4秒前
5秒前
帮帮完成签到,获得积分10
5秒前
徐明完成签到 ,获得积分10
5秒前
包容雪巧发布了新的文献求助10
5秒前
5秒前
xwm完成签到,获得积分10
5秒前
拾个勤天完成签到,获得积分10
6秒前
6秒前
clannad1218完成签到,获得积分10
6秒前
QZC完成签到 ,获得积分10
7秒前
7秒前
华仔应助灰烬使者采纳,获得10
7秒前
桐桐应助清晨采纳,获得10
7秒前
7秒前
乐乐应助苏翰英采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654