TopoCut

计算机科学 稳健性(进化) 几何处理 拓扑(电路) 算法 计算 可视化 网格生成 多边形网格 数学 数学优化 理论计算机科学 人工智能 有限元法 计算机图形学(图像) 组合数学 热力学 基因 物理 生物化学 化学
作者
Xianzhong Fang,Mathieu Desbrun,Hujun Bao,Jin Huang
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (4): 1-15 被引量:7
标识
DOI:10.1145/3528223.3530149
摘要

Given a complex three-dimensional domain delimited by a closed and non-degenerate input triangle mesh without any self-intersection, a common geometry processing task consists in cutting up the domain into cells through a set of planar cuts, creating a "cut-cell mesh", i.e., a volumetric decomposition of the domain amenable to visualization (e.g., exploded views), animation (e.g., virtual surgery), or simulation (finite volume computations). A large number of methods have proposed either efficient or robust solutions, sometimes restricting the cuts to form a regular or adaptive grid for simplicity; yet, none can guarantee both properties, severely limiting their usefulness in practice. At the core of the difficulty is the determination of topological relationships among large numbers of vertices, edges, faces and cells in order to assemble a proper cut-cell mesh: while exact geometric computations provide a robust solution to this issue, their high computational cost has prompted a number of faster solutions based on, e.g., local floating-point angle sorting to significantly accelerate the process --- but losing robustness in doing so. In this paper, we introduce a new approach to planar cutting of 3D domains that substitutes topological inference for numerical ordering through a novel mesh data structure, and revert to exact numerical evaluations only in the few rare cases where it is strictly necessary. We show that our novel concept of topological cuts exploits the inherent structure of cut-cell mesh generation to save computational time while still guaranteeing exactness for, and robustness to, arbitrary cuts and surface geometry. We demonstrate the superiority of our approach over state-of-the-art methods on almost 10,000 meshes with a wide range of geometric and topological complexity. We also provide an open source implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuoSiqi72应助lmr采纳,获得10
刚刚
wanci应助李建行采纳,获得10
刚刚
奋斗思柔发布了新的文献求助10
1秒前
慧子朱完成签到,获得积分20
1秒前
1秒前
情怀应助FF采纳,获得10
1秒前
1秒前
秀丽绿真发布了新的文献求助10
2秒前
2秒前
mia完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
bkagyin应助微笑的老五采纳,获得10
6秒前
打打应助Y.J采纳,获得10
6秒前
权_888发布了新的文献求助10
6秒前
LIU发布了新的文献求助20
6秒前
希望天下0贩的0应助zrz采纳,获得10
6秒前
可爱的函函应助陈峰琦采纳,获得10
6秒前
高洪杨完成签到,获得积分10
6秒前
猇会不会发布了新的文献求助10
6秒前
所所应助浩洁采纳,获得10
6秒前
7秒前
8秒前
一个酸葡萄干完成签到,获得积分10
9秒前
风中晓霜完成签到,获得积分10
9秒前
10秒前
Owen应助虚心的靖仇采纳,获得10
10秒前
2021完成签到,获得积分10
10秒前
势均力敌完成签到,获得积分10
10秒前
10秒前
糊涂的老师完成签到,获得积分10
10秒前
祖翩跹完成签到,获得积分10
10秒前
苏俊彬关注了科研通微信公众号
10秒前
阿氏之光发布了新的文献求助10
11秒前
eurhfe发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556