微型多孔材料
材料科学
质子交换膜燃料电池
电解质
催化作用
化学工程
氧气
产量(工程)
多孔性
比表面积
碳纤维
纳米技术
电极
物理化学
化学
复合材料
有机化学
工程类
复合数
作者
Xiaoying Xie,Lu Shang,Xuyang Xiong,Run Shi,Tierui Zhang
标识
DOI:10.1002/aenm.202102688
摘要
Abstract The development of Fe single‐atom catalysts (Fe SACs) with abundant, accessible Fe sites is a key step toward enhancing the efficiency of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this study, Zn 4 O(1,4‐benzenedicarboxylate) 3 (MOF‐5), which has a 3D microporous cubic structure, is used as the precursor to prepare highly‐porous carbon (denoted as C‐MOF‐5) with an ultrahigh specific surface area (2751 m 2 g –1 ) and high external surface area (1651 m 2 g –1 ). C‐MOF‐5 is demonstrated as an effective carbon support to yield Fe SAC‐MOF‐5 with a large amount of accessible FeN x sites (2.35 wt%). Fe SAC‐MOF‐5 delivers a half‐wave potential of 0.83 V (vs RHE) in a 0.5 m H 2 SO 4 electrolyte, and achieves a peak power density of 0.84 W cm –2 in a 0.2 MPa H 2 ‐O 2 PEMFC. This excellent performance originates from the ultrahigh specific surface area of C‐MOF‐5 for the formation of a high density of single Fe atoms, and high external surface area for the increased exposure of active sites. This work may inspire the rational design of metal single‐atom catalysts derived from a wider range of MOF precursors with ultrahigh specific area to improve the performance of the oxygen reduction reaction in PEMFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI