小脑
生物
癌症研究
癌变
转录因子
HEK 293细胞
泛素连接酶
甲基转移酶
泛素
癌症
甲基化
遗传学
受体
基因
作者
Dongxu Li,Xufen Yu,Jithesh Kottur,Weida Gong,Zhao Zhang,Aaron J. Storey,Yi‐Hsuan Tsai,Hidetaka Uryu,Yudao Shen,Stephanie D. Byrum,Rick D. Edmondson,Samuel G. Mackintosh,Ling Cai,Zhijie Liu,Aneel K. Aggarwal,Alan J. Tackett,Jing Liu,Jian Jin,Gang Greg Wang
出处
期刊:Oncogene
[Springer Nature]
日期:2022-05-07
卷期号:41 (24): 3328-3340
被引量:35
标识
DOI:10.1038/s41388-022-02340-8
摘要
WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI