Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays

地标 颈椎 计算机科学 人工智能 颈椎 点(几何) 人工神经网络 运动(物理) 像素 计算机视觉 模式识别(心理学) 医学 数学 解剖 外科 几何学
作者
Yuzhao Wang,Lan Huang,Minfei Wu,Shenyao Liu,Jianhang Jiao,Tian Bai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105576-105576 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.105576
摘要

Cervical vertebral landmark detection is a significant pre-task for vertebral relative motion parameter measurement, which is helpful for doctors to diagnose cervical spine diseases. Accurate cervical vertebral landmark detection could provide reliable motion parameter measurement results. However, different cervical spines in X-rays with various poses and angles have imposed quite challenges. It is observed that there are similar appearances of vertebral bones in different cervical spine X-rays. For this, to fully use these similar features, a multi-input adaptive U-Net (MultiIA-UNet) focusing on the similar local features between different cervical spine X-rays is put forward to do cervical vertebral landmark detection accurately and effectively. MultiIA-UNet used an improved U-Net structure as backbone network combining with the novel adaptive convolution module to better extract changing global features. At training, MultiIA-UNet applied a multi-input strategy to extract features from random pairs of training data at the same time, and then learned their similar local features through a subspace alignment module. We collected a dataset including 688 cervical spine X-rays to evaluate MultiIA-UNet. The results exhibited that our method demonstrated the state-of-the-art performance (the minimum average point to point error of 12.988 pixels). In addition, we further evaluated the effect of these landmark detection results on cervical motion angle parameter measurement. It showed that our method was capable to obtain more accurate cervical spine motion angle parameters (the minimum symmetric mean absolute percentage is 26.969%). MultiIA-UNet could be an efficient and accurate landmark detection method for doctors to do cervical vertebral motion analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
2秒前
2秒前
张火火完成签到,获得积分10
2秒前
我先睡了应助rh采纳,获得10
2秒前
三木发布了新的文献求助10
3秒前
12366666发布了新的文献求助10
3秒前
曾馨慧完成签到,获得积分10
3秒前
勤恳完成签到,获得积分10
3秒前
娜娜子完成签到 ,获得积分10
3秒前
研友_nEWrN8完成签到,获得积分10
4秒前
ilk666完成签到,获得积分10
4秒前
爱嚯可乐发布了新的文献求助10
4秒前
大模型应助笔花医镜采纳,获得10
5秒前
忧郁的绣连关注了科研通微信公众号
5秒前
桐桐应助聪明酒窝采纳,获得10
5秒前
Joshua发布了新的文献求助10
5秒前
贲从蓉发布了新的文献求助10
6秒前
充电宝应助波力海苔采纳,获得10
6秒前
沉默网络完成签到,获得积分10
6秒前
7秒前
所所应助12366666采纳,获得10
7秒前
7秒前
123发布了新的文献求助10
7秒前
周em12_完成签到,获得积分10
8秒前
敬老院N号应助hhll采纳,获得30
8秒前
9秒前
共享精神应助顾北采纳,获得10
9秒前
昭昭完成签到,获得积分10
9秒前
研友完成签到,获得积分10
9秒前
tcf完成签到,获得积分10
11秒前
11秒前
11秒前
汉堡包应助cole采纳,获得10
12秒前
12秒前
13秒前
13秒前
贲从蓉完成签到,获得积分10
13秒前
Joshua完成签到,获得积分10
13秒前
聪明酒窝完成签到,获得积分10
14秒前
sun完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957714
求助须知:如何正确求助?哪些是违规求助? 3503925
关于积分的说明 11115622
捐赠科研通 3235144
什么是DOI,文献DOI怎么找? 1788139
邀请新用户注册赠送积分活动 871034
科研通“疑难数据库(出版商)”最低求助积分说明 802453