Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays

地标 颈椎 计算机科学 人工智能 颈椎 点(几何) 人工神经网络 运动(物理) 像素 计算机视觉 模式识别(心理学) 医学 数学 解剖 外科 几何学
作者
Yuzhao Wang,Lan Huang,Minfei Wu,Shenyao Liu,Jianhang Jiao,Tian Bai
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105576-105576 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.105576
摘要

Cervical vertebral landmark detection is a significant pre-task for vertebral relative motion parameter measurement, which is helpful for doctors to diagnose cervical spine diseases. Accurate cervical vertebral landmark detection could provide reliable motion parameter measurement results. However, different cervical spines in X-rays with various poses and angles have imposed quite challenges. It is observed that there are similar appearances of vertebral bones in different cervical spine X-rays. For this, to fully use these similar features, a multi-input adaptive U-Net (MultiIA-UNet) focusing on the similar local features between different cervical spine X-rays is put forward to do cervical vertebral landmark detection accurately and effectively. MultiIA-UNet used an improved U-Net structure as backbone network combining with the novel adaptive convolution module to better extract changing global features. At training, MultiIA-UNet applied a multi-input strategy to extract features from random pairs of training data at the same time, and then learned their similar local features through a subspace alignment module. We collected a dataset including 688 cervical spine X-rays to evaluate MultiIA-UNet. The results exhibited that our method demonstrated the state-of-the-art performance (the minimum average point to point error of 12.988 pixels). In addition, we further evaluated the effect of these landmark detection results on cervical motion angle parameter measurement. It showed that our method was capable to obtain more accurate cervical spine motion angle parameters (the minimum symmetric mean absolute percentage is 26.969%). MultiIA-UNet could be an efficient and accurate landmark detection method for doctors to do cervical vertebral motion analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
噜噜噜噜噜完成签到,获得积分10
1秒前
2秒前
华仔应助岑戎采纳,获得30
2秒前
shardowzx完成签到,获得积分10
2秒前
2秒前
4秒前
小丸子发布了新的文献求助10
4秒前
4秒前
小陈完成签到,获得积分10
5秒前
CipherSage应助小雨采纳,获得10
5秒前
KingK发布了新的文献求助10
5秒前
SciGPT应助迪琛采纳,获得10
5秒前
shardowzx发布了新的文献求助10
6秒前
武映易完成签到 ,获得积分10
6秒前
6秒前
6秒前
千倾发布了新的文献求助10
6秒前
舒心谷雪完成签到,获得积分10
6秒前
Jin完成签到,获得积分10
6秒前
小陈发布了新的文献求助10
7秒前
abcdefghi__lmnop完成签到 ,获得积分10
7秒前
天御雪完成签到,获得积分10
7秒前
gyhmm发布了新的文献求助10
8秒前
咕噜噜发布了新的文献求助20
8秒前
www完成签到 ,获得积分10
9秒前
hkh发布了新的文献求助10
9秒前
lizixiang完成签到,获得积分10
9秒前
10秒前
Debra完成签到,获得积分10
12秒前
13秒前
小巴完成签到,获得积分10
13秒前
勤劳的沛山完成签到,获得积分10
14秒前
14秒前
思源应助苏素速速采纳,获得10
14秒前
15秒前
拔刀留樱落完成签到,获得积分10
17秒前
lululu发布了新的文献求助10
17秒前
17秒前
专注大白菜真实的钥匙完成签到,获得积分10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767