Effect of Anion on the Quantum Capacitance of Graphene Cathode in Lithium Ion Capacitor: A DFT Study

石墨烯 电解质 阴极 材料科学 锂(药物) 离子 电容 化学物理 超级电容器 电化学 费米能量 纳米技术 电极 化学 电子 物理 物理化学 有机化学 内分泌学 医学 量子力学
作者
Fangyuan Su,Cheng‐Meng Chen
出处
期刊:Meeting abstracts 卷期号:MA2019-04 (4): 187-187
标识
DOI:10.1149/ma2019-04/4/187
摘要

Lithium ion capacitor (LIC) is a kind of electrochemical energy storage device that can combine the power property of a supercapacitor and the energy property of a lithium ion battery simultaneously [1]. Graphene is widely employed as cathode because it can provide excellent capacitance, as well as constructing an effective conducting network [2, 3]. However, the detail understandings of electrode/electrolyte interface in graphene-based LIC is still limited. Based on our previous results, graphene with single vacant defect or pyridinic and pyrrolic doped N atom show much higher quantum capacitance (QC) than the pristine one [4]. This difference can be attributed to the presence of reactive σ state near the Fermi level, which is from the C or N atoms around the defect region. However, when it comes to the real LIC system, reactions may occur between the electrolyte and those reactive atoms in graphene cathode. Therefore, the presence of electrolyte will disturb the density of states (DOS) of graphene-based cathode, and hence the QC and the energy storage ability will vary accordingly. In this work, the interaction between the anion in the electrolyte and graphene cathode with high QC is investigated using First Principle calculation. The results suggest that the defect states of graphene cathode can enhance the adsorption energy towards anion, and hence the QC and electrical double layer (EDL) structure is different with that of pristine graphene cathode. Furthermore, this interaction also decrease the stability of the anion in electrolyte. The results from this work would help to further develop high energy graphene-based LIC and shed some light on its capacity fading mechanisms. Reference: [1] Cericola, et al., Electrochim. Acta, 72(2012), 1. [2] Chen, et al., Energ Environ Sci, 6(2013), 1623. [3] Yu, et al., Nano Energy, 15(2015), 43. [4] Su, et al., Catalysts 8(2018,) 444

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助今天放假了吗采纳,获得30
1秒前
1秒前
清爽冬卉完成签到,获得积分10
2秒前
4秒前
Connie发布了新的文献求助10
4秒前
发发完成签到 ,获得积分10
6秒前
Mayday完成签到,获得积分10
6秒前
7秒前
8秒前
Orange应助xiao白采纳,获得10
12秒前
12秒前
花痴的手套完成签到 ,获得积分10
14秒前
科研通AI5应助ylq采纳,获得30
15秒前
jun儁完成签到,获得积分10
16秒前
kirazou完成签到,获得积分10
17秒前
徐佳达完成签到,获得积分10
17秒前
坚定的芷烟完成签到 ,获得积分10
21秒前
Lxt完成签到,获得积分10
21秒前
23秒前
23秒前
Moshiqi发布了新的文献求助10
26秒前
zsx完成签到,获得积分10
28秒前
Lxt发布了新的文献求助10
28秒前
刘小刘认真读研完成签到,获得积分10
29秒前
29秒前
31秒前
HBXAurora发布了新的文献求助10
31秒前
yanaiqi完成签到 ,获得积分10
33秒前
xuanxuan完成签到 ,获得积分10
37秒前
我的文献呢应助热情若翠采纳,获得30
37秒前
37秒前
ha驳回了所所应助
38秒前
工藤新一发布了新的文献求助20
39秒前
十一发布了新的文献求助10
39秒前
40秒前
大方语风完成签到,获得积分10
40秒前
林度可乐完成签到 ,获得积分10
41秒前
42秒前
呃呃呃c发布了新的文献求助30
42秒前
Owen应助科研白菜采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629