Effect of Anion on the Quantum Capacitance of Graphene Cathode in Lithium Ion Capacitor: A DFT Study

石墨烯 电解质 阴极 材料科学 锂(药物) 离子 电容 化学物理 超级电容器 电化学 费米能量 纳米技术 电极 化学 电子 物理 物理化学 有机化学 内分泌学 医学 量子力学
作者
Fangyuan Su,Cheng‐Meng Chen
出处
期刊:Meeting abstracts 卷期号:MA2019-04 (4): 187-187
标识
DOI:10.1149/ma2019-04/4/187
摘要

Lithium ion capacitor (LIC) is a kind of electrochemical energy storage device that can combine the power property of a supercapacitor and the energy property of a lithium ion battery simultaneously [1]. Graphene is widely employed as cathode because it can provide excellent capacitance, as well as constructing an effective conducting network [2, 3]. However, the detail understandings of electrode/electrolyte interface in graphene-based LIC is still limited. Based on our previous results, graphene with single vacant defect or pyridinic and pyrrolic doped N atom show much higher quantum capacitance (QC) than the pristine one [4]. This difference can be attributed to the presence of reactive σ state near the Fermi level, which is from the C or N atoms around the defect region. However, when it comes to the real LIC system, reactions may occur between the electrolyte and those reactive atoms in graphene cathode. Therefore, the presence of electrolyte will disturb the density of states (DOS) of graphene-based cathode, and hence the QC and the energy storage ability will vary accordingly. In this work, the interaction between the anion in the electrolyte and graphene cathode with high QC is investigated using First Principle calculation. The results suggest that the defect states of graphene cathode can enhance the adsorption energy towards anion, and hence the QC and electrical double layer (EDL) structure is different with that of pristine graphene cathode. Furthermore, this interaction also decrease the stability of the anion in electrolyte. The results from this work would help to further develop high energy graphene-based LIC and shed some light on its capacity fading mechanisms. Reference: [1] Cericola, et al., Electrochim. Acta, 72(2012), 1. [2] Chen, et al., Energ Environ Sci, 6(2013), 1623. [3] Yu, et al., Nano Energy, 15(2015), 43. [4] Su, et al., Catalysts 8(2018,) 444

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小虎发布了新的文献求助10
1秒前
科目三应助wbn1212采纳,获得10
1秒前
路小雨完成签到,获得积分10
1秒前
孙大圣发布了新的文献求助10
2秒前
阿里院士完成签到,获得积分10
2秒前
左丘世立完成签到,获得积分10
2秒前
WL6发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
YxxxYLLL完成签到,获得积分10
5秒前
左丘世立发布了新的文献求助10
6秒前
6秒前
yyy发布了新的文献求助10
7秒前
7秒前
思源应助Aingen采纳,获得10
7秒前
7秒前
意难平完成签到 ,获得积分10
8秒前
苦涩油麦菜完成签到,获得积分10
8秒前
9秒前
YxxxYLLL发布了新的文献求助10
9秒前
11秒前
11秒前
路小雨发布了新的文献求助10
12秒前
12秒前
orixero应助Foremelon采纳,获得10
12秒前
12秒前
13秒前
13秒前
vivy完成签到,获得积分10
13秒前
ala完成签到,获得积分10
13秒前
14秒前
多情迎南发布了新的文献求助10
15秒前
科研通AI6.1应助FEN采纳,获得10
15秒前
15秒前
16秒前
16秒前
XW完成签到,获得积分10
16秒前
vivy发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002