Effect of Anion on the Quantum Capacitance of Graphene Cathode in Lithium Ion Capacitor: A DFT Study

石墨烯 电解质 阴极 材料科学 锂(药物) 离子 电容 化学物理 超级电容器 电化学 费米能量 纳米技术 电极 化学 电子 物理 物理化学 有机化学 量子力学 医学 内分泌学
作者
Fangyuan Su,Cheng‐Meng Chen
出处
期刊:Meeting abstracts 卷期号:MA2019-04 (4): 187-187
标识
DOI:10.1149/ma2019-04/4/187
摘要

Lithium ion capacitor (LIC) is a kind of electrochemical energy storage device that can combine the power property of a supercapacitor and the energy property of a lithium ion battery simultaneously [1]. Graphene is widely employed as cathode because it can provide excellent capacitance, as well as constructing an effective conducting network [2, 3]. However, the detail understandings of electrode/electrolyte interface in graphene-based LIC is still limited. Based on our previous results, graphene with single vacant defect or pyridinic and pyrrolic doped N atom show much higher quantum capacitance (QC) than the pristine one [4]. This difference can be attributed to the presence of reactive σ state near the Fermi level, which is from the C or N atoms around the defect region. However, when it comes to the real LIC system, reactions may occur between the electrolyte and those reactive atoms in graphene cathode. Therefore, the presence of electrolyte will disturb the density of states (DOS) of graphene-based cathode, and hence the QC and the energy storage ability will vary accordingly. In this work, the interaction between the anion in the electrolyte and graphene cathode with high QC is investigated using First Principle calculation. The results suggest that the defect states of graphene cathode can enhance the adsorption energy towards anion, and hence the QC and electrical double layer (EDL) structure is different with that of pristine graphene cathode. Furthermore, this interaction also decrease the stability of the anion in electrolyte. The results from this work would help to further develop high energy graphene-based LIC and shed some light on its capacity fading mechanisms. Reference: [1] Cericola, et al., Electrochim. Acta, 72(2012), 1. [2] Chen, et al., Energ Environ Sci, 6(2013), 1623. [3] Yu, et al., Nano Energy, 15(2015), 43. [4] Su, et al., Catalysts 8(2018,) 444

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
喻鞅完成签到,获得积分10
2秒前
可爱的函函应助刘雯采纳,获得10
2秒前
觉皇发布了新的文献求助10
2秒前
3秒前
3秒前
舒物发布了新的文献求助10
3秒前
4秒前
小蘑菇应助Dr.Joseph采纳,获得10
5秒前
6秒前
GEZI发布了新的文献求助10
7秒前
今天真暖发布了新的文献求助10
7秒前
nefu biology发布了新的文献求助10
8秒前
jstagey发布了新的文献求助10
9秒前
我是老大应助温暖静柏采纳,获得10
9秒前
guozizi发布了新的文献求助10
9秒前
10秒前
深情的路灯完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
祝星发布了新的文献求助10
13秒前
14秒前
14秒前
小程同学发布了新的文献求助10
16秒前
16秒前
SCINEXUS发布了新的文献求助10
16秒前
17秒前
顺利的飞荷完成签到,获得积分0
17秒前
酷波er应助jstagey采纳,获得10
17秒前
隐形曼青应助小亿采纳,获得10
18秒前
hhh发布了新的文献求助30
18秒前
十二月完成签到 ,获得积分10
19秒前
19秒前
19秒前
123完成签到,获得积分10
19秒前
20秒前
小白发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191