Corn emergence uniformity estimation and mapping using UAV imagery and deep learning

播种 均方误差 卷积神经网络 RGB颜色模型 比例(比率) 人工智能 遥感 环境科学 数学 统计 农学 计算机科学 地图学 地理 生物
作者
Chin Nee Vong,Lance S. Conway,Aijing Feng,Jianfeng Zhou,Newell R. Kitchen,Kenneth A. Sudduth
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107008-107008 被引量:18
标识
DOI:10.1016/j.compag.2022.107008
摘要

Assessment of corn (Zea Mays L.) emergence uniformity is important to evaluate crop yield potential. Previous studies have shown the potential of unmanned aerial vehicle (UAV) imagery and deep learning (DL) models in estimating early stand count and plant spacing uniformity, but few have extended further to field-scale mapping. Additionally, estimation of plant emergence date using UAV imagery in field-scale studies has not been achieved. This study aimed to estimate and map corn emergence uniformity using UAV imagery and DL modeling. Corn emergence uniformity was quantified with plant density, plant spacing standard deviation (PSstd), and mean days to imaging after emergence (DAEmean). Corn was planted at four depths (3.8, 5.1, 6.4, and 7.6 cm). A UAV imaging system equipped with a red, green, and blue (RGB) camera was used to acquire images at 10 m above ground level at 32 days after planting (20 days after emergence at V2-V4 growth stage). A pre-trained convolutional neural network, ResNet18, was used to estimate the three emergence parameters. Results showed the estimation accuracies in the testing dataset for plant density, PSstd, and DAEmean were 0.97, 0.73, and 0.95, respectively. The developed method had higher accuracy and lower root-mean-square-error for plant density and DAEmean, indicating better performance than previous studies. A case study was conducted to assess the emergence uniformity of corn at different planting depths using the developed estimation models at the field scale. From this, field maps were produced. Results showed that the average plant density and DAEmean decreased and the average PSstd increased with increasing depths, indicating deeper planting depths caused less and later emergence and less spatial uniformity in this field. These emergence uniformity field maps could be used for future field-scale agronomic studies on temporal and spatial crop emergence uniformity and for making planting decisions in commercial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛夷完成签到,获得积分10
刚刚
ZengXin发布了新的文献求助10
刚刚
1秒前
1秒前
酷波er应助冰果冻采纳,获得10
2秒前
2秒前
2秒前
Stephen123完成签到,获得积分10
3秒前
好HAO发布了新的文献求助10
3秒前
内向小熊猫完成签到,获得积分10
4秒前
hazzi完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
852应助自由采枫采纳,获得10
6秒前
6秒前
思源应助震动的机器猫采纳,获得10
6秒前
852应助喜汁郎采纳,获得10
7秒前
ardejiang发布了新的文献求助10
7秒前
靓丽初蓝发布了新的文献求助10
8秒前
LLLLLLL发布了新的文献求助10
8秒前
优秀若剑完成签到,获得积分10
8秒前
等豆宝儿完成签到,获得积分10
9秒前
Eden发布了新的文献求助10
9秒前
i_jueloa完成签到,获得积分10
9秒前
超帅路灯应助sjc采纳,获得10
10秒前
sherryLee完成签到,获得积分10
10秒前
冉小维发布了新的文献求助10
10秒前
呦呦又鹿完成签到,获得积分10
11秒前
斯文败类应助酵母菌菌采纳,获得10
11秒前
东郭凌波发布了新的文献求助10
11秒前
整形月光刀完成签到 ,获得积分10
11秒前
12秒前
香菜完成签到 ,获得积分10
12秒前
13秒前
科研通AI2S应助桑涣采纳,获得10
13秒前
天天快乐应助初空月儿采纳,获得10
13秒前
14秒前
好HAO完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782