Corn emergence uniformity estimation and mapping using UAV imagery and deep learning

播种 均方误差 卷积神经网络 RGB颜色模型 比例(比率) 人工智能 遥感 环境科学 数学 统计 农学 计算机科学 地图学 地理 生物
作者
Chin Nee Vong,Lance S. Conway,Aijing Feng,Jianfeng Zhou,Newell R. Kitchen,Kenneth A. Sudduth
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107008-107008 被引量:18
标识
DOI:10.1016/j.compag.2022.107008
摘要

Assessment of corn (Zea Mays L.) emergence uniformity is important to evaluate crop yield potential. Previous studies have shown the potential of unmanned aerial vehicle (UAV) imagery and deep learning (DL) models in estimating early stand count and plant spacing uniformity, but few have extended further to field-scale mapping. Additionally, estimation of plant emergence date using UAV imagery in field-scale studies has not been achieved. This study aimed to estimate and map corn emergence uniformity using UAV imagery and DL modeling. Corn emergence uniformity was quantified with plant density, plant spacing standard deviation (PSstd), and mean days to imaging after emergence (DAEmean). Corn was planted at four depths (3.8, 5.1, 6.4, and 7.6 cm). A UAV imaging system equipped with a red, green, and blue (RGB) camera was used to acquire images at 10 m above ground level at 32 days after planting (20 days after emergence at V2-V4 growth stage). A pre-trained convolutional neural network, ResNet18, was used to estimate the three emergence parameters. Results showed the estimation accuracies in the testing dataset for plant density, PSstd, and DAEmean were 0.97, 0.73, and 0.95, respectively. The developed method had higher accuracy and lower root-mean-square-error for plant density and DAEmean, indicating better performance than previous studies. A case study was conducted to assess the emergence uniformity of corn at different planting depths using the developed estimation models at the field scale. From this, field maps were produced. Results showed that the average plant density and DAEmean decreased and the average PSstd increased with increasing depths, indicating deeper planting depths caused less and later emergence and less spatial uniformity in this field. These emergence uniformity field maps could be used for future field-scale agronomic studies on temporal and spatial crop emergence uniformity and for making planting decisions in commercial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
科研通AI6应助i类上采纳,获得10
4秒前
WangXinkui发布了新的文献求助10
4秒前
结实伯云完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
ma关注了科研通微信公众号
6秒前
李健应助七七七采纳,获得10
6秒前
wwww发布了新的文献求助10
7秒前
7秒前
7秒前
科目三应助仲颖采纳,获得10
7秒前
大雄12138完成签到 ,获得积分10
8秒前
8秒前
研友_VZG7GZ应助桓桓桓桓采纳,获得10
9秒前
田様应助小明采纳,获得10
9秒前
量子星尘发布了新的文献求助50
10秒前
10秒前
科研通AI2S应助玩命的芝麻采纳,获得10
11秒前
阴天种花发布了新的文献求助10
13秒前
豆子冲发布了新的文献求助10
13秒前
会飞的烧鹅完成签到,获得积分10
14秒前
基2发布了新的文献求助10
14秒前
如意元容完成签到,获得积分10
16秒前
赘婿应助zzzjh采纳,获得10
17秒前
研友_VZG7GZ应助陈pc采纳,获得10
18秒前
yodel发布了新的文献求助30
18秒前
桓桓桓桓完成签到,获得积分20
19秒前
19秒前
wwww完成签到,获得积分10
19秒前
21秒前
Yun完成签到 ,获得积分10
21秒前
糖木发布了新的文献求助50
21秒前
Jasper应助风起青萍之末采纳,获得10
22秒前
yanglan完成签到,获得积分10
22秒前
hsy完成签到,获得积分10
24秒前
Bob完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898025
求助须知:如何正确求助?哪些是违规求助? 4178956
关于积分的说明 12973261
捐赠科研通 3942745
什么是DOI,文献DOI怎么找? 2162801
邀请新用户注册赠送积分活动 1181423
关于科研通互助平台的介绍 1086842