拉曼光谱
波数
人工智能
化学
模式识别(心理学)
瓶颈
转化(遗传学)
卷积神经网络
傅里叶变换
灵敏度(控制系统)
计算机科学
光学
物理
生物化学
电子工程
基因
嵌入式系统
工程类
量子力学
作者
Yafeng Qi,Guochao Zhang,Lin Yang,Bangxu Liu,Hui Zeng,Qi Xue,Dameng Liu,Qingfeng Zheng,Yuhong Liu
标识
DOI:10.1021/acs.analchem.1c05098
摘要
Raman spectroscopy, as a label-free detection technology, has been widely used in tumor diagnosis. However, most tumor diagnosis procedures utilize multivariate statistical analysis methods for classification, which poses a major bottleneck toward achieving high accuracy. Here, we propose a concept called the two-dimensional (2D) Raman figure combined with convolutional neural network (CNN) to improve the accuracy. Two-dimensional Raman figures can be obtained from four transformation methods: spectral recurrence plot (SRP), spectral Gramian angular field (SGAF), spectral short-time Fourier transform (SSTFT), and spectral Markov transition field (SMTF). Two-dimensional CNN models all yield more than 95% accuracy, which is higher than the PCA-LDA method and the Raman-spectrum-CNN method, indicating that 2D Raman figure inputs combined with CNN may be one reason for gaining excellent performances. Among 2D-CNN models, the main difference is the conversion, where SRP is based on the structure of wavenumber series with the best performances (98.9% accuracy, 99.5% sensitivity, 98.3% specificity), followed by SGAF on the wavenumber series, SSTFT on wavenumber and intensity information, and SMTF on wavenumber position information. The inclusion of external information in the conversion may be another reason for improvement in the accuracy. The excellent capability shows huge potential for tumor diagnosis via 2D Raman figures and may be applied in other spectroscopy analytical fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI