DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation

分割 计算机科学 特征(语言学) 比例(比率) 图像分割 人工智能 哲学 语言学 物理 量子力学
作者
Xinzi Sun,Yuanchang Xie,Liming Jiang,Yu Cao,Benyuan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18392-18403 被引量:149
标识
DOI:10.1109/tits.2022.3158670
摘要

Cracks are important indicators of pavement structural and operational conditions. Early pavement crack detection and treatments can help extend pavement service life, reduce fuel consumption, and improve safety and ride quality. Pavement distress surveys have traditionally been performed manually by visually inspecting the roads, which is labor-intensive and time-consuming. Therefore, computer-vision-based automated crack detection has great practical significance in pavement maintenance and traffic safety. Traditional image processing techniques are sensitive to noise in images and are thus likely to miss detecting some cracks due to the crack texture variety, complex lighting conditions, and various similar but irrelevant objects on the road. This paper adopts and enhances DeepLabv3+, a popular deep learning framework for semantic image segmentation, for road pavement crack detection. We propose a multi-scale attention module in the decoder of DeepLabv3+ to generate an attention mask and dynamically assign weights between high-level and low-level feature maps. Compared with fixed weights across different features, the dynamic weights strategy can assign more reasonable weights to different feature maps. Ablation experiments show that the attention mask can effectively help the model better combine multi-scale features and generate more accurate pavement crack segmentation results. The proposed method achieves state-of-the-art results on three benchmarks, including Crack500, DeepCrack, and FMA (Fitchburg Municipal Airport) datasets. We further test it on pavement crack images captured by smartphones, and the results show that it provides a viable approach to road pavement crack segmentation in practice with excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺兰发布了新的文献求助10
刚刚
陈思思发布了新的文献求助10
2秒前
fixing完成签到,获得积分10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Amu1uu应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
棋士应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
彭于晏应助忐忑的阑香采纳,获得10
6秒前
orixero应助小幸运采纳,获得10
6秒前
ZHC发布了新的文献求助10
6秒前
8秒前
不是小苦瓜完成签到,获得积分20
9秒前
上官若男应助猪肉水饺采纳,获得10
10秒前
共享精神应助卿雪尔采纳,获得10
10秒前
11秒前
斯文败类应助认真谷雪采纳,获得10
11秒前
乐乐完成签到 ,获得积分10
12秒前
Caism发布了新的文献求助10
12秒前
英俊的铭应助张雯思采纳,获得10
13秒前
wu8577应助张雯思采纳,获得10
13秒前
sweat发布了新的文献求助10
14秒前
15秒前
程瑞哲发布了新的文献求助10
15秒前
橙橙橙完成签到,获得积分10
15秒前
16秒前
SHAO应助瘦瘦妖妖采纳,获得10
16秒前
Owen应助arabidopsis采纳,获得30
16秒前
17秒前
22222发布了新的文献求助30
17秒前
古月发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019