亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation

分割 计算机科学 特征(语言学) 比例(比率) 图像分割 人工智能 哲学 语言学 物理 量子力学
作者
Xinzi Sun,Yuanchang Xie,Liming Jiang,Yu Cao,Benyuan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18392-18403 被引量:149
标识
DOI:10.1109/tits.2022.3158670
摘要

Cracks are important indicators of pavement structural and operational conditions. Early pavement crack detection and treatments can help extend pavement service life, reduce fuel consumption, and improve safety and ride quality. Pavement distress surveys have traditionally been performed manually by visually inspecting the roads, which is labor-intensive and time-consuming. Therefore, computer-vision-based automated crack detection has great practical significance in pavement maintenance and traffic safety. Traditional image processing techniques are sensitive to noise in images and are thus likely to miss detecting some cracks due to the crack texture variety, complex lighting conditions, and various similar but irrelevant objects on the road. This paper adopts and enhances DeepLabv3+, a popular deep learning framework for semantic image segmentation, for road pavement crack detection. We propose a multi-scale attention module in the decoder of DeepLabv3+ to generate an attention mask and dynamically assign weights between high-level and low-level feature maps. Compared with fixed weights across different features, the dynamic weights strategy can assign more reasonable weights to different feature maps. Ablation experiments show that the attention mask can effectively help the model better combine multi-scale features and generate more accurate pavement crack segmentation results. The proposed method achieves state-of-the-art results on three benchmarks, including Crack500, DeepCrack, and FMA (Fitchburg Municipal Airport) datasets. We further test it on pavement crack images captured by smartphones, and the results show that it provides a viable approach to road pavement crack segmentation in practice with excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天大青年发布了新的文献求助10
5秒前
流年完成签到 ,获得积分10
7秒前
852应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
天大青年完成签到,获得积分20
15秒前
三泥完成签到,获得积分10
22秒前
25秒前
寻道图强应助dagangwood采纳,获得30
30秒前
科研通AI6应助GLORIA采纳,获得30
45秒前
自觉的草莓完成签到 ,获得积分10
51秒前
lsl完成签到 ,获得积分10
58秒前
58秒前
1分钟前
yqwer发布了新的文献求助10
1分钟前
XinMR完成签到,获得积分10
1分钟前
1分钟前
dolabmu完成签到 ,获得积分10
1分钟前
孤央完成签到 ,获得积分10
1分钟前
1分钟前
chuan发布了新的文献求助10
1分钟前
Ava应助yqwer采纳,获得10
1分钟前
1分钟前
橘白完成签到,获得积分10
1分钟前
leileiz123应助chuan采纳,获得10
1分钟前
科研通AI6应助卷卷采纳,获得200
1分钟前
橘白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
早上坏完成签到,获得积分10
1分钟前
2分钟前
lllll发布了新的文献求助10
2分钟前
大力世界发布了新的文献求助10
2分钟前
seven完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413035
求助须知:如何正确求助?哪些是违规求助? 4530284
关于积分的说明 14122780
捐赠科研通 4445185
什么是DOI,文献DOI怎么找? 2439119
邀请新用户注册赠送积分活动 1431201
关于科研通互助平台的介绍 1408570