已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation

分割 计算机科学 特征(语言学) 比例(比率) 图像分割 人工智能 哲学 语言学 物理 量子力学
作者
Xinzi Sun,Yuanchang Xie,Liming Jiang,Yu Cao,Benyuan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18392-18403 被引量:103
标识
DOI:10.1109/tits.2022.3158670
摘要

Cracks are important indicators of pavement structural and operational conditions. Early pavement crack detection and treatments can help extend pavement service life, reduce fuel consumption, and improve safety and ride quality. Pavement distress surveys have traditionally been performed manually by visually inspecting the roads, which is labor-intensive and time-consuming. Therefore, computer-vision-based automated crack detection has great practical significance in pavement maintenance and traffic safety. Traditional image processing techniques are sensitive to noise in images and are thus likely to miss detecting some cracks due to the crack texture variety, complex lighting conditions, and various similar but irrelevant objects on the road. This paper adopts and enhances DeepLabv3+, a popular deep learning framework for semantic image segmentation, for road pavement crack detection. We propose a multi-scale attention module in the decoder of DeepLabv3+ to generate an attention mask and dynamically assign weights between high-level and low-level feature maps. Compared with fixed weights across different features, the dynamic weights strategy can assign more reasonable weights to different feature maps. Ablation experiments show that the attention mask can effectively help the model better combine multi-scale features and generate more accurate pavement crack segmentation results. The proposed method achieves state-of-the-art results on three benchmarks, including Crack500, DeepCrack, and FMA (Fitchburg Municipal Airport) datasets. We further test it on pavement crack images captured by smartphones, and the results show that it provides a viable approach to road pavement crack segmentation in practice with excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就叫希望吧完成签到 ,获得积分10
刚刚
moony完成签到 ,获得积分10
刚刚
秋葵拌饭完成签到,获得积分20
2秒前
科研通AI2S应助瑶咕隆咚采纳,获得30
3秒前
7秒前
8秒前
xiaxia完成签到 ,获得积分10
11秒前
香雪若梅发布了新的文献求助10
12秒前
特特雷珀萨努完成签到 ,获得积分10
13秒前
酷波er应助科研通管家采纳,获得10
15秒前
机灵笑蓝完成签到 ,获得积分10
15秒前
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
17秒前
18秒前
万能图书馆应助鱼丸哒采纳,获得10
18秒前
19秒前
19秒前
一只呆呆完成签到 ,获得积分10
20秒前
Qiqinnn发布了新的文献求助10
22秒前
陈媛发布了新的文献求助10
22秒前
huhu发布了新的文献求助10
23秒前
文子完成签到 ,获得积分10
24秒前
LIVE完成签到,获得积分10
25秒前
听闻墨笙完成签到 ,获得积分10
28秒前
庞mou完成签到 ,获得积分10
29秒前
冰西瓜完成签到 ,获得积分10
31秒前
32秒前
36秒前
37秒前
38秒前
王王王发布了新的文献求助10
38秒前
TANGTANG完成签到,获得积分10
39秒前
40秒前
dogontree发布了新的文献求助10
42秒前
TANGTANG发布了新的文献求助10
42秒前
酷波er应助陈媛采纳,获得10
43秒前
46秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793483
关于积分的说明 7806709
捐赠科研通 2449737
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601314