Radiomic analysis for predicting prognosis of colorectal cancer from preoperative 18F-FDG PET/CT

医学 结直肠癌 无线电技术 阶段(地层学) 相关性 随机森林 癌症 内科学 肿瘤科 放射科 人工智能 数学 计算机科学 几何学 生物 古生物学
作者
Lei Lv,Bowen Xin,Yichao Hao,Ziyi Yang,Junyan Xu,Lisheng Wang,Xiuying Wang,Shaoli Song,Xiaomao Guo
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:20 (1) 被引量:13
标识
DOI:10.1186/s12967-022-03262-5
摘要

To develop and validate a survival model with clinico-biological features and 18F- FDG PET/CT radiomic features via machine learning, and for predicting the prognosis from the primary tumor of colorectal cancer.A total of 196 pathologically confirmed patients with colorectal cancer (stage I to stage IV) were included. Preoperative clinical factors, serum tumor markers, and PET/CT radiomic features were included for the recurrence-free survival analysis. For the modeling and validation, patients were randomly divided into the training (n = 137) and validation (n = 59) set, while the 78 stage III patients [training (n = 55), and validation (n = 23)] was divided for the further experiment. After selecting features by the log-rank test and variable-hunting methods, random survival forest (RSF) models were built on the training set to analyze the prognostic value of selected features. The performance of models was measured by C-index and was tested on the validation set with bootstrapping. Feature importance and the Pearson correlation were also analyzed.Radiomics signature (containing four PET/CT features and four clinical factors) achieved the best result for prognostic prediction of 196 patients (C-index 0.780, 95% CI 0.634-0.877). Moreover, four features (including two clinical features and two radiomics features) were selected for prognostic prediction of the 78 stage III patients (C-index was 0.820, 95% CI 0.676-0.900). K-M curves of both models significantly stratified low-risk and high-risk groups (P < 0.0001). Pearson correlation analysis demonstrated that selected radiomics features were correlated with tumor metabolic factors, such as SUVmean, SUVmax.This study presents integrated clinico-biological-radiological models that can accurately predict the prognosis in colorectal cancer using the preoperative 18F-FDG PET/CT radiomics in colorectal cancer. It is of potential value in assisting the management and decision making for precision treatment in colorectal cancer. Trial registration The retrospectively registered study was approved by the Ethics Committee of Fudan University Shanghai Cancer Center (No. 1909207-14-1910) and the data were analyzed anonymously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒完成签到,获得积分10
1秒前
penghaha发布了新的文献求助10
1秒前
张牧之完成签到 ,获得积分10
1秒前
清川映叶应助lanbing802采纳,获得10
2秒前
laii完成签到,获得积分10
2秒前
fanzi完成签到 ,获得积分10
3秒前
万能图书馆应助学术笨蛋采纳,获得10
3秒前
KFC完成签到,获得积分20
4秒前
反杀闰土的猹完成签到,获得积分10
4秒前
明理紫萱完成签到,获得积分10
5秒前
5秒前
甜美映安应助penghaha采纳,获得10
6秒前
单薄天亦完成签到,获得积分10
7秒前
qq发布了新的文献求助10
8秒前
8秒前
大模型应助小陶采纳,获得10
9秒前
10秒前
ddz发布了新的文献求助20
11秒前
11秒前
木子木公完成签到,获得积分10
11秒前
烟花应助魁梧的雨双采纳,获得10
11秒前
cc发布了新的文献求助10
13秒前
13秒前
yuewumu完成签到,获得积分10
14秒前
wax应助分子遗传小菜鸟采纳,获得10
15秒前
LY_Qin完成签到,获得积分10
17秒前
18秒前
游大达完成签到,获得积分0
19秒前
yznfly发布了新的文献求助10
19秒前
酷炫的凝梦完成签到,获得积分10
19秒前
爱打球的小蔡鸡完成签到,获得积分10
20秒前
Hello应助董菲音采纳,获得20
22秒前
22秒前
闪闪龙猫完成签到,获得积分10
23秒前
23秒前
dophin应助Henry采纳,获得10
23秒前
23秒前
朴实凝雁发布了新的文献求助10
23秒前
情怀应助斯文败类虎采纳,获得10
24秒前
奋斗的冬云完成签到,获得积分10
24秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350675
求助须知:如何正确求助?哪些是违规求助? 2976353
关于积分的说明 8674083
捐赠科研通 2657466
什么是DOI,文献DOI怎么找? 1455067
科研通“疑难数据库(出版商)”最低求助积分说明 673656
邀请新用户注册赠送积分活动 664120