New image dataset and new negative sample judgment method for crop pest recognition based on deep learning models

人工智能 深度学习 有害生物分析 计算机科学 机器学习 学习迁移 样品(材料) 领域(数学) 农业 模式识别(心理学) 农业工程
作者
Kaili Wang,Keyu Chen,Huiyu Du,Shuang Liu,Jingwen Xu,Junfang Zhao,Houlin Chen,Yujun Liu,Yang Liu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:69: 101620-101620 被引量:4
标识
DOI:10.1016/j.ecoinf.2022.101620
摘要

Crop pests are responsible for serious economic loss around the worldwide. Accurate recognition of pests is the key to pest control and is a considerable challenge in farming. Deep learning models have shown great promise in image recognition, drawing the attention of many agricultural experts. However, the lack of pest image datasets and the inexplicability of deep learning models have hindered the development of deep learning models in the field of pest recognition. Our work provides the following four contributions: (1) We constructed a new and more effective dataset, for crop pest recognition, named IP41 comprising 46,567 original images of crop pests in 41 classes. (2) We trained three different deep learning models based on IP41, using transfer learning combined with fine-tuning. The results of the three deep learning models exceeded 80.00% recognition. (3) A negative sample judgment method was proposed to exclude the uploaded pest-free images of the user. (4) We provided reasonable visual explanations for the most critical areas of the recognition layers by using the gradient-weighted class activation mapping method. This research suggests that the recognition process focuses more on image details than the image as a whole, and that overall difference is ignored to a certain extent. These results will be helpful to future research in the field of agricultural pest recognition • We constructed a new and more effective dataset. • Three high-performance deep learning models have been trained and fine-tuned. • Negative sample judgment method was proposed to exclude pest-free images. • Visual explanation have been provided for the recognition of deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助优美匕采纳,获得10
刚刚
刘娇娇完成签到,获得积分10
1秒前
feng完成签到,获得积分10
2秒前
书生发布了新的文献求助10
3秒前
3秒前
3秒前
情怀应助缓慢的易梦采纳,获得10
3秒前
加贝完成签到 ,获得积分10
3秒前
小蜡笔完成签到,获得积分20
4秒前
苗条妙旋应助蓝橙采纳,获得10
4秒前
4秒前
任性眼睛完成签到,获得积分10
4秒前
song发布了新的文献求助10
4秒前
Hany发布了新的文献求助10
5秒前
任性的百招关注了科研通微信公众号
6秒前
lllllsy完成签到,获得积分10
6秒前
7秒前
至秦发布了新的文献求助10
7秒前
余歌完成签到,获得积分20
7秒前
上官若男应助猪猪hero采纳,获得10
8秒前
早睡早起完成签到,获得积分10
9秒前
9秒前
柠檬茶156完成签到,获得积分10
9秒前
nana湘发布了新的文献求助10
9秒前
Orange应助海风吹采纳,获得10
9秒前
热心天佑完成签到,获得积分10
10秒前
萌新小白完成签到,获得积分20
10秒前
zhouzhou完成签到,获得积分10
11秒前
眼睛大盼兰完成签到 ,获得积分10
11秒前
Jilly完成签到,获得积分10
11秒前
田様应助行道吉安采纳,获得30
12秒前
细心的飞荷完成签到,获得积分10
12秒前
传奇3应助聚乙二醇采纳,获得10
13秒前
waubycid完成签到,获得积分10
13秒前
是我非我完成签到,获得积分10
13秒前
orixero应助祁尒采纳,获得10
14秒前
champagnefeng发布了新的文献求助10
14秒前
谷大喵唔发布了新的文献求助10
14秒前
共享精神应助ClaudiaY0采纳,获得10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447636
求助须知:如何正确求助?哪些是违规求助? 3043409
关于积分的说明 8993992
捐赠科研通 2731761
什么是DOI,文献DOI怎么找? 1498429
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690578