作者
Saman Sargazi,Zahra Ahmadi,Mahmood Barani,Abbas Rahdar,Soheil Amani,Martín F. Desimone,Sadanand Pandey,George Z. Kyzas
摘要
Human infertilities are disorders that afflict many people all over the world. Both male and female reproductive systems must work together in a precise and coordinated manner and infertility has a wide range of problems for this system. Recent advances in nanomedicine immensely helped design the diagnostic and therapeutic approaches to alleviate human infertility in both sexes. Nanoscience has recently been used by researchers to increase the detection limit of infertility-related biomarkers via fabricating sensitive nanobiosensors for detecting follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-müllerian hormone (AMH), pregnancy-associated plasma protein-A (PAPP-A), progesterone, and testosterone. At the same time, a variety of nanostructures, including magnetic nanoparticles (i.e., zinc nanoparticles, cerium nanoparticles, gold nanoparticles, silver nanoparticles), nano-vitamins, extracellular vesicles, and spermbots, have shown promising outcomes in the treatment of human infertilities. Despite recent advancements, some nanostructures might have toxic effects on cells, especially germ cells, and must be optimized with the right ingredients, such as antioxidants, nutrients, and vitamins, to obtain the right strategy to treat and detect human infertilities. This review presents recent developments in nanotechnology regarding impairments still faced by human infertility. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed. In conclusion, nanotechnology, as a tool for reproductive medicine, has been considered to help overcome current impairments.