Mass detection of walnut based on X‐ray imaging technology

核(代数) 径向基函数 人工智能 残余物 数学 基础(线性代数) 纹理(宇宙学) 模式识别(心理学) 计算机科学 图像(数学) 算法 人工神经网络 几何学 组合数学
作者
Ting-yao Gao,Shujuan Zhang,Haixia Sun,Rui Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (8) 被引量:1
标识
DOI:10.1111/jfpe.14034
摘要

In view of the problem of low accuracy in walnut mass detection caused by relatively inconstant density, this study suggested the integration of X-ray imaging technology and image processing technology with machine learning for walnut mass detection. Using image processing technology to remove the background of walnut X-ray image and to segment the kernels, the mass prediction models could be constructed after extracting the shape and texture of walnut characteristic parameters and the kernel shape characteristic parameters. The results revealed that when mass prediction models were built based on walnut shape characteristic parameters or constructed with the application of texture characteristic parameters, the determination coefficient (R2) were rather low, even the residual predictive deviation (RPD) less than 1.4, proving that these models were not reliable. However, when mass prediction models were built based on walnut and kernel shape characteristic parameters, the R2 for both partial least squares (PLS) and radial basis function (RBF) models were higher than 0.84. And the RPD values were 1.8133 and 1.7474, respectively. On this basis, when competitive adaptive reweighed sampling (CARS) optimized parameters were adopted, the R2 for both PLS and RBF models were higher than 0.86 and the RPD were 1.8759 and 1.8850, respectively. The result proved that the application of walnut and kernel shape characteristics can improve the accuracy of model prediction. Therefore, using X-ray imaging technology to detect walnut mass was feasible, which could realized the prompt, accurate and nondestructive detection of walnut mass. This technology provided a novel thought for the accurate grading of walnuts. Practical Applications At present, there is a problem of similar size but large mass difference after walnut size classification, which directly affects the commodity value of walnuts. It is necessary to combine multiple characteristics to select and classify walnuts. Mass is an important grading index. With the development of machine vision technology, online detection of fruit mass has been realized. However, due to the relatively inconstant density of walnuts and the limitation of the technology, the machine vision technique cannot obtain internal information. This study used X-ray transmission to obtain the internal information of walnuts without destroying the walnuts. At the same time, the mass detection models were established by combining the internal and external characteristics of the walnuts to achieve fast, accurate, and nondestructive testing of walnut mass. Automatic mass detection provides technical support for intelligent grading, which has important production significance and economic value for the development of the walnut industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林煜昕完成签到,获得积分10
刚刚
kcp发布了新的文献求助10
刚刚
1秒前
自信尔冬完成签到,获得积分10
1秒前
陈飞达发布了新的文献求助10
1秒前
hxysdmn发布了新的文献求助10
1秒前
1秒前
Shirley完成签到,获得积分10
2秒前
myy完成签到,获得积分10
2秒前
2秒前
Liu发布了新的文献求助10
2秒前
木头人完成签到,获得积分10
3秒前
再慕完成签到,获得积分10
4秒前
雪白飞槐完成签到,获得积分10
4秒前
4秒前
尹没有发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
moika完成签到,获得积分10
7秒前
7秒前
111完成签到,获得积分10
7秒前
7秒前
明亮如花发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
心旷神怡发布了新的文献求助10
8秒前
Michael发布了新的文献求助10
9秒前
大力发布了新的文献求助10
10秒前
10秒前
wanci应助邓佩雨采纳,获得10
10秒前
罗新燕完成签到,获得积分20
11秒前
111发布了新的文献求助10
11秒前
11秒前
llll发布了新的文献求助10
12秒前
化学天空完成签到,获得积分10
12秒前
害羞外套发布了新的文献求助10
13秒前
明理依云发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750645
求助须知:如何正确求助?哪些是违规求助? 5464898
关于积分的说明 15367334
捐赠科研通 4889553
什么是DOI,文献DOI怎么找? 2629305
邀请新用户注册赠送积分活动 1577613
关于科研通互助平台的介绍 1534037