Image Generation by Residual Block Based Generative Adversarial Networks

计算机科学 人工智能 鉴别器 特征(语言学) 块(置换群论) 图像(数学) 残余物 生成语法 模式识别(心理学) 图像复原 发电机(电路理论) 图像翻译 对抗制 纹理合成 计算机视觉 图像纹理 图像处理 算法 数学 哲学 物理 探测器 电信 功率(物理) 量子力学 语言学 几何学
作者
Kuan-Hsien Liu,Chien-Cheng Lin,Tsung-Jung Liu
标识
DOI:10.1109/icce53296.2022.9730533
摘要

Generative adversarial network is a popular deep learning technique for solving artificial intelligence tasks, and it has been widely studied and applied for processing images, voices, texts and so on. Especially, generative adversarial network is adopted in the field of image processing, such as image style transfer, image restoration, image super-resolution and so on. Although generative adversarial networks show remarkable success in image generation, training process is usually unstable and trained models collapse where many of the generated images may contain the same color or texture pattern. In this paper, the network of generator and discriminator are modified, and the residual block is added to the generative adversarial network architecture to learn better image features. To reduce the loss of image feature during training and get more features to stabilize image generation, we use feature matching to minimize feature loss between the real and generated images for stable training. In the experiment, performance improvement can be obtained by adopting our proposed method, which is also better than some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
康康完成签到,获得积分10
1秒前
Xv完成签到,获得积分0
1秒前
4秒前
4秒前
香蕉觅云应助zfzf0422采纳,获得10
4秒前
5秒前
5秒前
李健应助爱听歌的向日葵采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得80
6秒前
所所应助科研通管家采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
婷婷发布了新的文献求助10
7秒前
zzt完成签到,获得积分10
9秒前
张小汉发布了新的文献求助30
10秒前
二十四发布了新的文献求助10
10秒前
赘婿应助junzilan采纳,获得10
10秒前
FashionBoy应助勤恳的雨文采纳,获得10
10秒前
aaa完成签到,获得积分10
11秒前
12秒前
11111完成签到,获得积分20
13秒前
仔wang完成签到,获得积分10
13秒前
15秒前
忘羡222发布了新的文献求助20
15秒前
15秒前
温暖涫完成签到,获得积分10
17秒前
11111发布了新的文献求助10
17秒前
健忘的牛排完成签到,获得积分10
18秒前
wmmm完成签到,获得积分10
18秒前
Akim应助爱吃泡芙采纳,获得10
18秒前
老迟到的书雁完成签到 ,获得积分10
18秒前
18秒前
正经俠发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824