Removing Stripe Noise from Satellite Images using Convolutional Neural Networks in Frequency Domain

噪音(视频) 卷积神经网络 频域 计算机科学 跨度(工程) 人工智能 像素 算法 离散傅里叶变换(通用) 傅里叶变换 领域(数学分析) 图像(数学) 语音识别 模式识别(心理学) 计算机视觉 数学 工程类 傅里叶分析 短时傅里叶变换 数学分析 土木工程
作者
Moien Rangzan,Sara Attarchi
标识
DOI:10.5194/egusphere-egu22-12575
摘要

<p><span>Many satellite images are corrupted by stripping; this noise degrades the visual quality of the images and inevitably introduces errors in processing. Thermal and hyperspectral images often suffer from stripping. The frequency distribution characteristic of stripe noise makes it difficult to remove such noise in the spatial domain; contrariwise, this noise can be efficiently detected in the frequency domain. Numerous solutions have been proposed to eliminate such noise using Fourier transform; however, most are subjective and time-consuming approaches.</span></p><p><span>The lack of a fast and automated tool in this subject has motivated us to introduce a Convolutional Neural Network-based tool that uses the U-Net architecture in the frequency domain to suppress the anomalies caused by stripe noise. We added synthetic noise to satellite images to train the model. Then, we taught the network how to mask these anomalies in the frequency domain. The input image dataset was down-sampled to a size of 128 x128 pixels for a fast training time. However, our results suggest that the output mask can be up-scaled and applied on the original Fourier transform of the image and still achieve satisfying results; this means that the proposed algorithm is applicable on images regardless of their size. </span></p><p><span>After the training step, the U-Net architecture can confidently find the anomalies and create an acceptable bounding mask; the results show that - with enough training data- the proposed procedure can efficiently remove stripe noise from all sorts of images. At this stage, we are trying to further develop the model to detect and suppress more complex synthetic noise. Next, we will focus on removing real stripe noise on satellite images to present a robust tool.</span></p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss2021完成签到,获得积分10
刚刚
欣喜万言完成签到 ,获得积分10
1秒前
田様应助热心的夜安采纳,获得10
2秒前
3秒前
6秒前
小雨点完成签到 ,获得积分10
6秒前
LD发布了新的文献求助10
7秒前
ding应助shawn采纳,获得10
9秒前
Junlei完成签到,获得积分10
10秒前
哈哈哈完成签到,获得积分10
11秒前
bigger.b完成签到,获得积分10
11秒前
小程同学完成签到 ,获得积分10
12秒前
言余给wind的求助进行了留言
13秒前
jbh完成签到,获得积分10
14秒前
YANA完成签到,获得积分10
15秒前
18秒前
顺心靖雁完成签到,获得积分10
20秒前
23秒前
daniel666完成签到 ,获得积分0
24秒前
24秒前
25秒前
cach完成签到,获得积分10
25秒前
25秒前
26秒前
啤酒白酒葡萄酒完成签到,获得积分10
26秒前
侠客发布了新的文献求助10
27秒前
29秒前
852应助奋斗的俊驰采纳,获得10
30秒前
温暖幻桃发布了新的文献求助10
31秒前
贺小刚发布了新的文献求助100
31秒前
科研牛马完成签到 ,获得积分20
31秒前
深情安青应助why采纳,获得10
33秒前
jiao完成签到,获得积分10
33秒前
35秒前
丘比特应助LD采纳,获得10
35秒前
36秒前
研友_VZG7GZ应助zzyfsh采纳,获得10
36秒前
Estrella应助阔达如凡采纳,获得10
37秒前
热心的夜安完成签到,获得积分10
37秒前
wg发布了新的文献求助10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413