Removing Stripe Noise from Satellite Images using Convolutional Neural Networks in Frequency Domain

噪音(视频) 卷积神经网络 频域 计算机科学 跨度(工程) 人工智能 像素 算法 离散傅里叶变换(通用) 傅里叶变换 领域(数学分析) 图像(数学) 语音识别 模式识别(心理学) 计算机视觉 数学 工程类 傅里叶分析 短时傅里叶变换 数学分析 土木工程
作者
Moien Rangzan,Sara Attarchi
标识
DOI:10.5194/egusphere-egu22-12575
摘要

<p><span>Many satellite images are corrupted by stripping; this noise degrades the visual quality of the images and inevitably introduces errors in processing. Thermal and hyperspectral images often suffer from stripping. The frequency distribution characteristic of stripe noise makes it difficult to remove such noise in the spatial domain; contrariwise, this noise can be efficiently detected in the frequency domain. Numerous solutions have been proposed to eliminate such noise using Fourier transform; however, most are subjective and time-consuming approaches.</span></p><p><span>The lack of a fast and automated tool in this subject has motivated us to introduce a Convolutional Neural Network-based tool that uses the U-Net architecture in the frequency domain to suppress the anomalies caused by stripe noise. We added synthetic noise to satellite images to train the model. Then, we taught the network how to mask these anomalies in the frequency domain. The input image dataset was down-sampled to a size of 128 x128 pixels for a fast training time. However, our results suggest that the output mask can be up-scaled and applied on the original Fourier transform of the image and still achieve satisfying results; this means that the proposed algorithm is applicable on images regardless of their size. </span></p><p><span>After the training step, the U-Net architecture can confidently find the anomalies and create an acceptable bounding mask; the results show that - with enough training data- the proposed procedure can efficiently remove stripe noise from all sorts of images. At this stage, we are trying to further develop the model to detect and suppress more complex synthetic noise. Next, we will focus on removing real stripe noise on satellite images to present a robust tool.</span></p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王静姝完成签到,获得积分10
刚刚
xueerbx完成签到,获得积分10
刚刚
oo完成签到,获得积分10
刚刚
pp完成签到,获得积分10
刚刚
1秒前
ganerwahaha完成签到,获得积分10
1秒前
王大锤完成签到,获得积分10
2秒前
小路发布了新的文献求助10
2秒前
2秒前
我来文献求助了完成签到,获得积分10
3秒前
3秒前
舒心储完成签到,获得积分10
3秒前
4秒前
Japrin完成签到,获得积分10
4秒前
目光所致发布了新的文献求助10
4秒前
5秒前
侠客完成签到,获得积分10
5秒前
温瞳完成签到,获得积分10
5秒前
dbdxyty完成签到,获得积分0
5秒前
Reginannnn完成签到,获得积分10
6秒前
韦老虎完成签到,获得积分20
6秒前
静静完成签到 ,获得积分10
6秒前
6秒前
会撒娇的凝琴完成签到,获得积分10
6秒前
cijing完成签到,获得积分10
8秒前
jh完成签到,获得积分10
8秒前
PANSIXUAN完成签到,获得积分10
8秒前
阳光总在风雨后完成签到,获得积分0
9秒前
9秒前
木笔发布了新的文献求助10
9秒前
9秒前
ndndd完成签到,获得积分10
9秒前
xiong完成签到,获得积分10
10秒前
10秒前
善良书蕾完成签到,获得积分10
10秒前
Darcy完成签到,获得积分10
10秒前
桐桐应助顺顺顺采纳,获得10
10秒前
kean1943完成签到,获得积分10
10秒前
西红柿完成签到,获得积分10
10秒前
继往开来完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067058
求助须知:如何正确求助?哪些是违规求助? 4288959
关于积分的说明 13361075
捐赠科研通 4108412
什么是DOI,文献DOI怎么找? 2249688
邀请新用户注册赠送积分活动 1255122
关于科研通互助平台的介绍 1187612