亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Removing Stripe Noise from Satellite Images using Convolutional Neural Networks in Frequency Domain

噪音(视频) 卷积神经网络 频域 计算机科学 跨度(工程) 人工智能 像素 算法 离散傅里叶变换(通用) 傅里叶变换 领域(数学分析) 图像(数学) 语音识别 模式识别(心理学) 计算机视觉 数学 工程类 傅里叶分析 短时傅里叶变换 数学分析 土木工程
作者
Moien Rangzan,Sara Attarchi
标识
DOI:10.5194/egusphere-egu22-12575
摘要

<p><span>Many satellite images are corrupted by stripping; this noise degrades the visual quality of the images and inevitably introduces errors in processing. Thermal and hyperspectral images often suffer from stripping. The frequency distribution characteristic of stripe noise makes it difficult to remove such noise in the spatial domain; contrariwise, this noise can be efficiently detected in the frequency domain. Numerous solutions have been proposed to eliminate such noise using Fourier transform; however, most are subjective and time-consuming approaches.</span></p><p><span>The lack of a fast and automated tool in this subject has motivated us to introduce a Convolutional Neural Network-based tool that uses the U-Net architecture in the frequency domain to suppress the anomalies caused by stripe noise. We added synthetic noise to satellite images to train the model. Then, we taught the network how to mask these anomalies in the frequency domain. The input image dataset was down-sampled to a size of 128 x128 pixels for a fast training time. However, our results suggest that the output mask can be up-scaled and applied on the original Fourier transform of the image and still achieve satisfying results; this means that the proposed algorithm is applicable on images regardless of their size. </span></p><p><span>After the training step, the U-Net architecture can confidently find the anomalies and create an acceptable bounding mask; the results show that - with enough training data- the proposed procedure can efficiently remove stripe noise from all sorts of images. At this stage, we are trying to further develop the model to detect and suppress more complex synthetic noise. Next, we will focus on removing real stripe noise on satellite images to present a robust tool.</span></p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助喊我彩彩采纳,获得10
2秒前
4秒前
10秒前
量子星尘发布了新的文献求助10
24秒前
zzzllove完成签到 ,获得积分10
1分钟前
1分钟前
英勇小伙完成签到,获得积分10
1分钟前
1分钟前
喊我彩彩发布了新的文献求助10
1分钟前
1分钟前
小玉米完成签到 ,获得积分10
1分钟前
喊我彩彩完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CING发布了新的文献求助10
1分钟前
1分钟前
尊敬的丹烟完成签到 ,获得积分10
2分钟前
wwww完成签到 ,获得积分10
2分钟前
2分钟前
CING完成签到,获得积分10
2分钟前
clp完成签到,获得积分10
2分钟前
3分钟前
shirley要奋斗完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
jeronimo完成签到,获得积分10
3分钟前
yhgz完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
葉鳳怡完成签到 ,获得积分10
4分钟前
4分钟前
飘逸晓凡完成签到,获得积分20
4分钟前
玄音完成签到,获得积分10
4分钟前
check003完成签到,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
曾经不言完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069