Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits

生物 遗传学 插补(统计学) 特质 人口 数量性状位点 基因 遗传建筑学 表达数量性状基因座 进化生物学
作者
Heather M Highland,Genevieve L Wojcik,Mariaelisa Graff,Katherine K Nishimura,Chani J Hodonsky,Antoine R Baldassari,Alanna C Cote,Iona Cheng,Christopher R Gignoux,Ran Tao,Yuqing Li,Eric Boerwinkle,Myriam Fornage,Jeffrey Haessler,Lucia A Hindorff,Yao Hu,Anne E Justice,Bridget M Lin,Danyu Lin,Daniel O Stram,Christopher A Haiman,Charles Kooperberg,Loic Le Marchand,Tara C Matise,Eimear E Kenny,Christopher S Carlson,Eli A Stahl,Christy L Avery,Kari E North,Jose Luis Ambite,Steven Buyske,Ruth J Loos,Ulrike Peters,Kristin L Young,Stephanie A Bien,Laura M Huckins
出处
期刊:American Journal of Human Genetics [Elsevier BV]
标识
DOI:10.1016/j.ajhg.2022.02.013
摘要

Summary

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
swapping完成签到 ,获得积分10
4秒前
彭栋发布了新的文献求助10
6秒前
所所应助萨日呼采纳,获得10
7秒前
9秒前
隐形曼青应助hh采纳,获得50
11秒前
义气如萱发布了新的文献求助10
12秒前
小俊完成签到,获得积分10
14秒前
Nana发布了新的文献求助20
15秒前
小二郎应助修管子采纳,获得10
16秒前
mie完成签到,获得积分10
19秒前
19秒前
20秒前
寄语明月发布了新的文献求助10
22秒前
hh发布了新的文献求助50
24秒前
mie发布了新的文献求助10
24秒前
CipherSage应助wu基督教采纳,获得10
25秒前
lalala完成签到,获得积分10
26秒前
科研通AI5应助Bressanone采纳,获得10
27秒前
27秒前
29秒前
FashionBoy应助anna采纳,获得10
34秒前
34秒前
36秒前
大智若愚骨头完成签到,获得积分10
37秒前
37秒前
40秒前
量子星尘发布了新的文献求助10
40秒前
9℃发布了新的文献求助10
40秒前
科研通AI2S应助lm采纳,获得10
41秒前
山谷发布了新的文献求助10
42秒前
感动黄豆发布了新的文献求助10
44秒前
46秒前
47秒前
47秒前
47秒前
49秒前
Owen应助晒太阳的加菲猫采纳,获得10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105