Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits

生物 遗传学 插补(统计学) 特质 人口 数量性状位点 基因 遗传建筑学 表达数量性状基因座 进化生物学
作者
Heather M Highland,Genevieve L Wojcik,Mariaelisa Graff,Katherine K Nishimura,Chani J Hodonsky,Antoine R Baldassari,Alanna C Cote,Iona Cheng,Christopher R Gignoux,Ran Tao,Yuqing Li,Eric Boerwinkle,Myriam Fornage,Jeffrey Haessler,Lucia A Hindorff,Yao Hu,Anne E Justice,Bridget M Lin,Danyu Lin,Daniel O Stram,Christopher A Haiman,Charles Kooperberg,Loic Le Marchand,Tara C Matise,Eimear E Kenny,Christopher S Carlson,Eli A Stahl,Christy L Avery,Kari E North,Jose Luis Ambite,Steven Buyske,Ruth J Loos,Ulrike Peters,Kristin L Young,Stephanie A Bien,Laura M Huckins
出处
期刊:American Journal of Human Genetics [Elsevier]
标识
DOI:10.1016/j.ajhg.2022.02.013
摘要

Summary

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
landforall_23完成签到,获得积分10
4秒前
不爱吃醋关注了科研通微信公众号
5秒前
7秒前
小蘑菇应助安陌煜采纳,获得10
9秒前
羊羊羊完成签到,获得积分10
10秒前
11秒前
义气雍发布了新的文献求助10
17秒前
TongKY完成签到 ,获得积分10
17秒前
隐形曼青应助QI采纳,获得10
17秒前
FF完成签到 ,获得积分10
18秒前
公西傲蕾完成签到,获得积分10
20秒前
22秒前
22秒前
安陌煜发布了新的文献求助30
24秒前
不远完成签到,获得积分10
24秒前
24秒前
拾捌发布了新的文献求助10
26秒前
upon完成签到,获得积分10
26秒前
QI完成签到,获得积分10
28秒前
29秒前
shining完成签到,获得积分10
29秒前
Tom完成签到,获得积分10
32秒前
32秒前
yunna_ning完成签到,获得积分10
33秒前
赘婿应助x5kyi采纳,获得30
34秒前
myheat发布了新的文献求助10
34秒前
卡丁完成签到 ,获得积分10
36秒前
秋寒陈酿完成签到,获得积分10
38秒前
义气雍发布了新的文献求助10
38秒前
Ava应助不爱洗澡的小玲采纳,获得10
39秒前
不配.应助RuiminXie采纳,获得10
41秒前
不爱吃醋发布了新的文献求助30
44秒前
47秒前
47秒前
48秒前
50秒前
Xulyun完成签到 ,获得积分10
50秒前
53秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079