A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data

过度拟合 概化理论 人工智能 支持向量机 机器学习 计算机科学 卷积神经网络 分类器(UML) 队列 深度学习 人口 人工神经网络 医学 统计 数学 病理 环境卫生
作者
Caihua Wang,Yuanzhong Li,Yukihiro Tsuboshita,Takuya Sakurai,Tsubasa Goto,Hiroyuki Yamaguchi,Yuichi Yamashita,Atsushi Sekiguchi,Hisateru Tachimori,Caihua Wang,Yuanzhong Li,Tsubasa Goto
出处
期刊:npj digital medicine [Springer Nature]
卷期号:5 (1) 被引量:16
标识
DOI:10.1038/s41746-022-00577-x
摘要

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张晓娜完成签到,获得积分10
刚刚
Ar完成签到,获得积分10
3秒前
可靠的秋尽关注了科研通微信公众号
3秒前
shenren完成签到,获得积分10
4秒前
JamesPei应助秃顶双马尾采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
xiaoyun2852完成签到,获得积分0
6秒前
李爱国应助黄淮二傻采纳,获得10
8秒前
10秒前
pcyang完成签到,获得积分10
14秒前
king完成签到,获得积分10
15秒前
nnnny发布了新的文献求助50
20秒前
20秒前
21秒前
Lucia_yx完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
LSJ完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
搜集达人应助十七采纳,获得10
28秒前
乐乐应助小刘不搞科研采纳,获得30
28秒前
高兴绿柳完成签到 ,获得积分10
28秒前
30秒前
clonidine发布了新的文献求助10
31秒前
优雅的猪完成签到,获得积分10
32秒前
33秒前
34秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530