A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data

过度拟合 概化理论 人工智能 支持向量机 机器学习 计算机科学 卷积神经网络 分类器(UML) 队列 深度学习 人口 人工神经网络 医学 统计 数学 病理 环境卫生
作者
Caihua Wang,Yuanzhong Li,Yukihiro Tsuboshita,Takuya Sakurai,Tsubasa Goto,Hiroyuki Yamaguchi,Yuichi Yamashita,Atsushi Sekiguchi,Hisateru Tachimori,Caihua Wang,Yuanzhong Li,Tsubasa Goto
出处
期刊:npj digital medicine [Springer Nature]
卷期号:5 (1) 被引量:16
标识
DOI:10.1038/s41746-022-00577-x
摘要

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
1秒前
WDK完成签到,获得积分10
1秒前
情怀应助敏感的芷采纳,获得10
1秒前
Orange应助方勇飞采纳,获得10
2秒前
FashionBoy应助烂漫驳采纳,获得10
2秒前
3秒前
4秒前
大鱼完成签到,获得积分10
4秒前
4秒前
lu完成签到,获得积分10
5秒前
Murphy完成签到 ,获得积分10
5秒前
斯文败类应助大方嵩采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
6秒前
hh应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得20
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得200
7秒前
orixero应助科研通管家采纳,获得10
7秒前
许多知识发布了新的文献求助10
8秒前
FashionBoy应助su采纳,获得10
8秒前
8秒前
运敬完成签到 ,获得积分10
9秒前
XSB完成签到,获得积分10
9秒前
青草蛋糕完成签到 ,获得积分10
9秒前
怡然剑成完成签到,获得积分10
9秒前
9秒前
liyuchen发布了新的文献求助10
10秒前
ipeakkka完成签到,获得积分20
12秒前
马克发布了新的文献求助10
12秒前
赵OO完成签到,获得积分10
12秒前
Yon完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824