A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data

过度拟合 概化理论 人工智能 支持向量机 机器学习 计算机科学 卷积神经网络 分类器(UML) 队列 深度学习 人口 人工神经网络 医学 统计 数学 病理 环境卫生
作者
Caihua Wang,Yuanzhong Li,Yukihiro Tsuboshita,Takuya Sakurai,Tsubasa Goto,Hiroyuki Yamaguchi,Yuichi Yamashita,Atsushi Sekiguchi,Hisateru Tachimori,Caihua Wang,Yuanzhong Li,Tsubasa Goto
出处
期刊:npj digital medicine [Springer Nature]
卷期号:5 (1) 被引量:16
标识
DOI:10.1038/s41746-022-00577-x
摘要

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助1sxc采纳,获得10
1秒前
3秒前
chen完成签到,获得积分10
3秒前
321完成签到 ,获得积分10
4秒前
4秒前
传奇3应助zzzdx采纳,获得10
4秒前
orixero应助王景晨采纳,获得10
4秒前
绵绵发布了新的文献求助10
5秒前
YZ发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
传奇3应助孤独曲奇采纳,获得10
7秒前
刘家成发布了新的文献求助10
9秒前
郑光英发布了新的文献求助30
10秒前
赘婿应助平淡的萤采纳,获得10
10秒前
WU发布了新的文献求助10
10秒前
orixero应助dasfdufos采纳,获得10
12秒前
12秒前
酒酿圆子发布了新的文献求助10
13秒前
慕青应助刘家成采纳,获得10
14秒前
乾巧完成签到,获得积分10
14秒前
15秒前
anan发布了新的文献求助10
15秒前
an完成签到,获得积分10
16秒前
17秒前
18秒前
大模型应助狄语蕊采纳,获得10
19秒前
陈嘉嘉完成签到,获得积分10
20秒前
月光完成签到 ,获得积分10
21秒前
21秒前
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
xf应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
ccm应助科研通管家采纳,获得200
23秒前
段雁开应助科研通管家采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288858
求助须知:如何正确求助?哪些是违规求助? 4440637
关于积分的说明 13825255
捐赠科研通 4322964
什么是DOI,文献DOI怎么找? 2372842
邀请新用户注册赠送积分活动 1368324
关于科研通互助平台的介绍 1332194