A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data

过度拟合 概化理论 人工智能 支持向量机 机器学习 计算机科学 卷积神经网络 分类器(UML) 队列 深度学习 人口 人工神经网络 医学 统计 数学 病理 环境卫生
作者
Caihua Wang,Yuanzhong Li,Yukihiro Tsuboshita,Takuya Sakurai,Tsubasa Goto,Hiroyuki Yamaguchi,Yuichi Yamashita,Atsushi Sekiguchi,Hisateru Tachimori,Caihua Wang,Yuanzhong Li,Tsubasa Goto
出处
期刊:npj digital medicine [Springer Nature]
卷期号:5 (1) 被引量:16
标识
DOI:10.1038/s41746-022-00577-x
摘要

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一路向阳发布了新的文献求助10
1秒前
bkagyin应助ccm采纳,获得10
2秒前
饱满服饰发布了新的文献求助10
2秒前
飘落发布了新的文献求助10
2秒前
3秒前
4秒前
553599712完成签到,获得积分10
4秒前
浮游应助homo采纳,获得10
6秒前
7秒前
猫逗逗关注了科研通微信公众号
7秒前
科研通AI6应助小雒雒采纳,获得10
9秒前
十七发布了新的文献求助10
9秒前
9秒前
wlscj应助科研通管家采纳,获得20
9秒前
lu应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
SciGPT应助飘落采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
wlscj应助科研通管家采纳,获得20
10秒前
老福贵儿应助科研通管家采纳,获得10
10秒前
lu应助科研通管家采纳,获得10
10秒前
Hilda007应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得30
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
Raven应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
哆啦十七应助平常的半凡采纳,获得10
12秒前
Chiwen发布了新的文献求助10
12秒前
呼延初瑶完成签到 ,获得积分10
13秒前
在水一方应助lzx采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360368
求助须知:如何正确求助?哪些是违规求助? 4490992
关于积分的说明 13980821
捐赠科研通 4393554
什么是DOI,文献DOI怎么找? 2413505
邀请新用户注册赠送积分活动 1406337
关于科研通互助平台的介绍 1380829