A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data

过度拟合 概化理论 人工智能 支持向量机 机器学习 计算机科学 卷积神经网络 分类器(UML) 队列 深度学习 人口 人工神经网络 医学 统计 数学 病理 环境卫生
作者
Caihua Wang,Yuanzhong Li,Yukihiro Tsuboshita,Takuya Sakurai,Tsubasa Goto,Hiroyuki Yamaguchi,Yuichi Yamashita,Atsushi Sekiguchi,Hisateru Tachimori,Caihua Wang,Yuanzhong Li,Tsubasa Goto
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:5 (1) 被引量:16
标识
DOI:10.1038/s41746-022-00577-x
摘要

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzy1317完成签到,获得积分10
刚刚
1秒前
jeffemily完成签到,获得积分10
1秒前
汤泽琪发布了新的文献求助10
1秒前
1秒前
顾矜应助一枝安采纳,获得10
2秒前
希望天下0贩的0应助星空采纳,获得10
2秒前
2秒前
Geminiwod完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
ZZY发布了新的文献求助10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
522发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
bkagyin应助高文雅采纳,获得10
5秒前
5秒前
默默曼安发布了新的文献求助10
6秒前
慕青应助hz采纳,获得10
6秒前
Hello应助牛马研究生采纳,获得10
7秒前
见微完成签到,获得积分10
7秒前
tianshicanyi发布了新的文献求助10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079