Plasma Quantitative Lipid Profiles: Identification of CarnitineC18:1-OH, CarnitineC18:2-OH and FFA (20:1) as Novel Biomarkers for Pre-warning and Prognosis in Acute Myocardial Infarction

心肌梗塞 内科学 医学 脂质代谢 逻辑回归 生物标志物 血脂谱 代谢组学 不稳定型心绞痛 胆固醇 心脏病学 生物信息学 生物化学 化学 生物
作者
Jun Li,Lina Tang,Qingming Lu,Yi Yu,Qiu-Gui Xu,Shanqiang Zhang,Yunxian Chen,Wenjie Dai,Jicheng Li
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:6
标识
DOI:10.3389/fcvm.2022.848840
摘要

This study was aimed to determine the association between potential plasma lipid biomarkers and early screening and prognosis of Acute myocardial infarction (AMI). In the present study, a total of 795 differentially expressed lipid metabolites were detected based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Out of these metabolites, 25 lipid metabolites were identified which showed specifical expression in the AMI group compared with the healthy control (HC) group and unstable angina (UA) group. Then, we applied the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) methods to obtain three lipid molecules, including CarnitineC18:1-OH, CarnitineC18:2-OH and FFA (20:1). The three lipid metabolites and the diagnostic model exhibited well predictive ability in discriminating between AMI patients and UA patients in both the discovery and validation sets with an area under the curve (AUC) of 0.9. Univariate and multivariate logistic regression analyses indicated that the three lipid metabolites may serve as potential biomarkers for diagnosing AMI. A subsequent 1-year follow-up analysis indicated that the three lipid biomarkers also had prominent performance in predicting re-admission of patients with AMI due to cardiovascular events. In summary, we used quantitative lipid technology to delineate the characteristics of lipid metabolism in patients with AMI, and identified potential early diagnosis biomarkers of AMI via machine learning approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qzxwsa完成签到,获得积分10
刚刚
刚刚
荔枝一点_完成签到,获得积分20
刚刚
111完成签到 ,获得积分10
1秒前
完美世界应助kbkyvuy采纳,获得10
1秒前
罗mian发布了新的文献求助10
1秒前
1秒前
iris2333发布了新的文献求助10
1秒前
斯文败类应助大婷子采纳,获得10
2秒前
辛勤的诗柳应助小鬼采纳,获得10
2秒前
budingman发布了新的文献求助30
3秒前
budingman发布了新的文献求助10
3秒前
搜集达人应助tt采纳,获得10
4秒前
budingman发布了新的文献求助10
4秒前
budingman发布了新的文献求助10
4秒前
budingman发布了新的文献求助10
5秒前
budingman发布了新的文献求助10
5秒前
5秒前
多多发布了新的文献求助10
5秒前
5秒前
荔枝一点_发布了新的文献求助20
5秒前
budingman发布了新的文献求助10
5秒前
龙龙宝宝完成签到,获得积分10
5秒前
Akim应助345采纳,获得10
6秒前
需尽欢发布了新的文献求助10
6秒前
传奇3应助布枕头采纳,获得10
7秒前
浊酒完成签到,获得积分10
7秒前
Blank发布了新的文献求助10
8秒前
8秒前
lxy完成签到,获得积分10
8秒前
8秒前
马静完成签到,获得积分10
10秒前
yang发布了新的文献求助10
10秒前
孤鲸游发布了新的文献求助10
10秒前
10秒前
阿达完成签到,获得积分10
11秒前
sun发布了新的文献求助10
11秒前
温柔发卡完成签到 ,获得积分20
11秒前
小二郎应助仁爱的秋天采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485