Plasma Quantitative Lipid Profiles: Identification of CarnitineC18:1-OH, CarnitineC18:2-OH and FFA (20:1) as Novel Biomarkers for Pre-warning and Prognosis in Acute Myocardial Infarction

心肌梗塞 内科学 医学 脂质代谢 逻辑回归 生物标志物 血脂谱 代谢组学 不稳定型心绞痛 胆固醇 心脏病学 生物信息学 生物化学 化学 生物
作者
Jun Li,Lina Tang,Qingming Lu,Yi Yu,Qiu-Gui Xu,Shanqiang Zhang,Yunxian Chen,Wenjie Dai,Jicheng Li
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:6
标识
DOI:10.3389/fcvm.2022.848840
摘要

This study was aimed to determine the association between potential plasma lipid biomarkers and early screening and prognosis of Acute myocardial infarction (AMI). In the present study, a total of 795 differentially expressed lipid metabolites were detected based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Out of these metabolites, 25 lipid metabolites were identified which showed specifical expression in the AMI group compared with the healthy control (HC) group and unstable angina (UA) group. Then, we applied the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) methods to obtain three lipid molecules, including CarnitineC18:1-OH, CarnitineC18:2-OH and FFA (20:1). The three lipid metabolites and the diagnostic model exhibited well predictive ability in discriminating between AMI patients and UA patients in both the discovery and validation sets with an area under the curve (AUC) of 0.9. Univariate and multivariate logistic regression analyses indicated that the three lipid metabolites may serve as potential biomarkers for diagnosing AMI. A subsequent 1-year follow-up analysis indicated that the three lipid biomarkers also had prominent performance in predicting re-admission of patients with AMI due to cardiovascular events. In summary, we used quantitative lipid technology to delineate the characteristics of lipid metabolism in patients with AMI, and identified potential early diagnosis biomarkers of AMI via machine learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
大力板栗完成签到 ,获得积分10
6秒前
8秒前
积极的黑猫完成签到 ,获得积分10
8秒前
开放刺猬发布了新的文献求助10
8秒前
Jun应助笑点低易真采纳,获得20
9秒前
9秒前
科研通AI2S应助Rita采纳,获得10
11秒前
科研通AI2S应助YTY采纳,获得10
12秒前
12秒前
lz发布了新的文献求助10
14秒前
jasar发布了新的文献求助10
15秒前
kk119完成签到,获得积分10
15秒前
心子吖发布了新的文献求助10
16秒前
Cc发布了新的文献求助10
16秒前
王小丹发布了新的文献求助10
17秒前
无问完成签到,获得积分10
21秒前
YTY完成签到,获得积分10
21秒前
星辰大海应助七七采纳,获得10
21秒前
接心软审稿人完成签到 ,获得积分10
22秒前
啥东西啥发布了新的文献求助10
24秒前
从容芮应助lz采纳,获得10
24秒前
元夕阑珊发布了新的文献求助10
24秒前
在水一方应助chyx采纳,获得10
25秒前
26秒前
tangzelun完成签到,获得积分10
29秒前
huster完成签到,获得积分10
30秒前
帅男发布了新的文献求助10
31秒前
爆米花应助Robe采纳,获得10
31秒前
彭于晏应助心子吖采纳,获得10
32秒前
32秒前
33秒前
34秒前
雪晴完成签到,获得积分20
35秒前
35秒前
35秒前
ronin完成签到,获得积分10
36秒前
37秒前
雪晴发布了新的文献求助10
37秒前
南吕完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112