🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A Robust Game-Theoretical Federated Learning Framework With Joint Differential Privacy

差别隐私 计算机科学 接头(建筑物) 计算机安全 数据挖掘 工程类 建筑工程
作者
Lefeng Zhang,Tianqing Zhu,Ping Xiong,Wanlei Zhou,Philip S. Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 3333-3346 被引量:49
标识
DOI:10.1109/tkde.2021.3140131
摘要

Federated learning is a promising distributed machine learning paradigm that has been playing a significant role in providing privacy-preserving learning solutions. However, alongside all its achievements, there are also limitations. First, traditional frameworks assume that all the clients are voluntary and so will want to participate in training only for improving the model's accuracy. However, in reality, clients usually want to be adequately compensated for the data and resources they will use before participating. Second, today's frameworks do not offer sufficient protection against malicious participants who try to skew a jointly trained model with poisoned updates. To address these concerns, we have developed a more robust federated learning scheme based on joint differential privacy. The framework provides two game-theoretic mechanisms to motivate clients to participate in training. These mechanisms are dominant-strategy truthful, individual rational, and budget-balanced. Further, the influence an adversarial client can have is quantified and restricted, and data privacy is similarly guaranteed in quantitative terms. Experiments with different training models on real-word datasets demonstrate the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI2S应助飞龙在天采纳,获得10
3秒前
4秒前
chwmqnf完成签到,获得积分20
4秒前
4秒前
青果发布了新的文献求助10
4秒前
DAJI发布了新的文献求助30
5秒前
依依发布了新的文献求助50
6秒前
9秒前
赘婿应助ZeSheng采纳,获得10
10秒前
无聊的人完成签到,获得积分10
10秒前
Alanza发布了新的文献求助10
12秒前
13秒前
在水一方应助核电站采纳,获得10
14秒前
Andy.发布了新的文献求助10
15秒前
juckblack发布了新的文献求助10
15秒前
16秒前
Akim应助青果采纳,获得10
16秒前
17秒前
佳佳发布了新的文献求助10
19秒前
搜集达人应助marrylet采纳,获得10
20秒前
午见千山应助jo采纳,获得10
20秒前
helly完成签到,获得积分10
21秒前
ZeSheng发布了新的文献求助10
22秒前
22秒前
张琳完成签到 ,获得积分10
22秒前
22秒前
潇湘发布了新的文献求助10
23秒前
王哪跑12完成签到,获得积分10
23秒前
25秒前
25秒前
王哪跑12发布了新的文献求助20
26秒前
于鹏完成签到,获得积分10
27秒前
天天快乐应助shimly0101xx采纳,获得10
27秒前
chenshi发布了新的文献求助10
30秒前
30秒前
科研通AI5应助xxxxxx采纳,获得10
31秒前
科研通AI2S应助Mp4采纳,获得10
32秒前
潇湘完成签到,获得积分20
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599660
求助须知:如何正确求助?哪些是违规求助? 3168387
关于积分的说明 9557289
捐赠科研通 2874740
什么是DOI,文献DOI怎么找? 1578290
邀请新用户注册赠送积分活动 742059
科研通“疑难数据库(出版商)”最低求助积分说明 725042