清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cross-Domain Open-Set Machinery Fault Diagnosis Based on Adversarial Network With Multiple Auxiliary Classifiers

对抗制 杠杆(统计) 计算机科学 加权 领域(数学分析) 集合(抽象数据类型) 域适应 人工智能 学习迁移 断层(地质) 分类器(UML) 数据挖掘 模式识别(心理学) 机器学习 数学 放射科 地质学 数学分析 地震学 医学 程序设计语言
作者
Jun Zhu,Cheng‐Geng Huang,Changqing Shen,Yongjun Shen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 8077-8086 被引量:96
标识
DOI:10.1109/tii.2021.3138558
摘要

Cross-domain fault diagnosis methods based on transfer learning attempt to leverage knowledge from a domain with sufficient labeled samples to a different but related domain with few or even nonlabeled samples. These methods have been widely investigated in the past years. Notwithstanding the efficacy, most existing approaches assume that the label spaces of training and testing data are the same. However, this assumption is not practical in actual applications because new fault category usually happens in the testing stage. A cross-domain open-set transfer diagnosis method is presented in this article to manage the aforementioned problem. Domain adversarial model is employed to discriminate known from unknown target instances. Moreover, multiple auxiliary classifiers introduce a weighting module to evaluate the distinguishing domain knowledge to provide target instances with representative weights. The new adversarial domain adaptation network with diverse supplementary classifiers can effectively identify the unknown and known fault categories in the target domain and bridge the domain shift between the common fault category of the source and target domain. Experiments on two bearing datasets show the effectiveness and advantage of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
莨菪发布了新的文献求助10
17秒前
tt完成签到,获得积分10
26秒前
斯文的清涟完成签到,获得积分10
41秒前
47秒前
盈盈发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
1分钟前
1分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
2分钟前
Penny完成签到,获得积分10
2分钟前
Penny发布了新的文献求助10
2分钟前
盈盈发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
3分钟前
4分钟前
4分钟前
jjy发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160