Non-contact detection of railhead defects and their classification by using convolutional neural network

卷积神经网络 人工智能 计算机科学 人工神经网络 分类 支持向量机 超声波传感器 模式识别(心理学) 计算机视觉 声学 物理
作者
Imran Ghafoor,Peter W. Tse,Nauman Munir,Amy J.C. Trappey
出处
期刊:Optik [Elsevier]
卷期号:253: 168607-168607 被引量:13
标识
DOI:10.1016/j.ijleo.2022.168607
摘要

Railhead defects must be detected and classified intelligently in order for railway transportation systems to operate safely. Rail defect identification and categorization can be automated by using machine learning models to process rail image data (acquired using cameras). However, such an automated method has significant drawbacks: it cannot detect subsurface defects, picture data requires a high-end GPU with a long computational time, and machine learning model training can be influenced by image quality, which is dependent on light intensity and shooting altitude. Rayleigh waves are a potential candidate for rail inspection because they can detect both surface and subsurface defects and travel long distances on curved surfaces (like a rail) at high speed. This article looks into the possibility of combining fully non-contact laser ultrasonic technology (LUT) and a deep learning approach for intelligent detection and classification of railhead surface and subsurface defects. The fully non-contact LUT was used to actuate and capture laser-generated Rayleigh wave signals on railhead specimens in order to create a database of A-scan signals from healthy, surface, subsurface, and edge defect railheads. The classification capabilities of a support vector machine (SVM), a fully connected deep neural network (DNN), and a convolutional neural network (CNN) were examined after they were applied to the preprocessed signals without extracting any statistical/signal processing-based characteristics. The comparative analysis demonstrates that CNN is robust in classifying railhead defects. As a result, when combined with CNN, the laser ultrasonic technology may ensure automatic defection and classification of railhead surface and subsurface flaws.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Tangyartie采纳,获得10
1秒前
1秒前
文献使者完成签到,获得积分10
1秒前
酷酷的笔记本完成签到,获得积分10
2秒前
2秒前
浮游应助LL采纳,获得10
2秒前
3秒前
Lazarus完成签到,获得积分10
3秒前
3秒前
欧小嘢完成签到,获得积分10
4秒前
4秒前
Akim应助润润轩轩采纳,获得10
4秒前
5秒前
5秒前
5秒前
淡淡大山完成签到,获得积分10
5秒前
NexusExplorer应助weihuang采纳,获得10
6秒前
柠檬泡芙完成签到,获得积分10
6秒前
renjh完成签到,获得积分10
6秒前
7秒前
103x发布了新的文献求助10
7秒前
91ge完成签到 ,获得积分10
7秒前
窦无剑发布了新的文献求助10
7秒前
minggalaxy007发布了新的文献求助10
7秒前
哈基米完成签到 ,获得积分10
7秒前
小罗黑的完成签到,获得积分10
7秒前
8秒前
lyl发布了新的文献求助10
8秒前
小布丁发布了新的文献求助10
8秒前
清爽逊完成签到,获得积分20
8秒前
Owen应助阿东c采纳,获得10
8秒前
蓝书签发布了新的文献求助10
8秒前
9秒前
Lwssss发布了新的文献求助10
9秒前
tana98906发布了新的文献求助10
9秒前
9秒前
9秒前
cs发布了新的文献求助10
9秒前
乐观的海发布了新的文献求助10
9秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401