亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-contact detection of railhead defects and their classification by using convolutional neural network

卷积神经网络 人工智能 计算机科学 人工神经网络 分类 支持向量机 超声波传感器 模式识别(心理学) 计算机视觉 声学 物理
作者
Imran Ghafoor,Peter W. Tse,Nauman Munir,Amy J.C. Trappey
出处
期刊:Optik [Elsevier]
卷期号:253: 168607-168607 被引量:13
标识
DOI:10.1016/j.ijleo.2022.168607
摘要

Railhead defects must be detected and classified intelligently in order for railway transportation systems to operate safely. Rail defect identification and categorization can be automated by using machine learning models to process rail image data (acquired using cameras). However, such an automated method has significant drawbacks: it cannot detect subsurface defects, picture data requires a high-end GPU with a long computational time, and machine learning model training can be influenced by image quality, which is dependent on light intensity and shooting altitude. Rayleigh waves are a potential candidate for rail inspection because they can detect both surface and subsurface defects and travel long distances on curved surfaces (like a rail) at high speed. This article looks into the possibility of combining fully non-contact laser ultrasonic technology (LUT) and a deep learning approach for intelligent detection and classification of railhead surface and subsurface defects. The fully non-contact LUT was used to actuate and capture laser-generated Rayleigh wave signals on railhead specimens in order to create a database of A-scan signals from healthy, surface, subsurface, and edge defect railheads. The classification capabilities of a support vector machine (SVM), a fully connected deep neural network (DNN), and a convolutional neural network (CNN) were examined after they were applied to the preprocessed signals without extracting any statistical/signal processing-based characteristics. The comparative analysis demonstrates that CNN is robust in classifying railhead defects. As a result, when combined with CNN, the laser ultrasonic technology may ensure automatic defection and classification of railhead surface and subsurface flaws.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
手术刀完成签到 ,获得积分10
32秒前
SciGPT应助爽朗雨后风采纳,获得10
46秒前
54秒前
Jia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
茶茶完成签到,获得积分10
1分钟前
Jia完成签到,获得积分20
1分钟前
CodeCraft应助十三月的过客采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
十三月的过客完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小苹果发布了新的文献求助10
2分钟前
小张完成签到 ,获得积分10
2分钟前
kuoping完成签到,获得积分10
2分钟前
2分钟前
小苹果完成签到,获得积分10
2分钟前
沙脑完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
jekyll发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
xwz626完成签到,获得积分10
6分钟前
tao ism完成签到 ,获得积分0
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
烽烽烽发布了新的文献求助30
7分钟前
寿司求学记完成签到,获得积分10
8分钟前
8分钟前
Cindy发布了新的文献求助10
8分钟前
隐形曼青应助北方木棉采纳,获得10
8分钟前
一周发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271587
求助须知:如何正确求助?哪些是违规求助? 2910724
关于积分的说明 8355608
捐赠科研通 2581202
什么是DOI,文献DOI怎么找? 1404094
科研通“疑难数据库(出版商)”最低求助积分说明 656077
邀请新用户注册赠送积分活动 635549