Non-contact detection of railhead defects and their classification by using convolutional neural network

卷积神经网络 人工智能 计算机科学 人工神经网络 分类 支持向量机 超声波传感器 模式识别(心理学) 计算机视觉 声学 物理
作者
Imran Ghafoor,Peter W. Tse,Nauman Munir,Amy J.C. Trappey
出处
期刊:Optik [Elsevier BV]
卷期号:253: 168607-168607 被引量:13
标识
DOI:10.1016/j.ijleo.2022.168607
摘要

Railhead defects must be detected and classified intelligently in order for railway transportation systems to operate safely. Rail defect identification and categorization can be automated by using machine learning models to process rail image data (acquired using cameras). However, such an automated method has significant drawbacks: it cannot detect subsurface defects, picture data requires a high-end GPU with a long computational time, and machine learning model training can be influenced by image quality, which is dependent on light intensity and shooting altitude. Rayleigh waves are a potential candidate for rail inspection because they can detect both surface and subsurface defects and travel long distances on curved surfaces (like a rail) at high speed. This article looks into the possibility of combining fully non-contact laser ultrasonic technology (LUT) and a deep learning approach for intelligent detection and classification of railhead surface and subsurface defects. The fully non-contact LUT was used to actuate and capture laser-generated Rayleigh wave signals on railhead specimens in order to create a database of A-scan signals from healthy, surface, subsurface, and edge defect railheads. The classification capabilities of a support vector machine (SVM), a fully connected deep neural network (DNN), and a convolutional neural network (CNN) were examined after they were applied to the preprocessed signals without extracting any statistical/signal processing-based characteristics. The comparative analysis demonstrates that CNN is robust in classifying railhead defects. As a result, when combined with CNN, the laser ultrasonic technology may ensure automatic defection and classification of railhead surface and subsurface flaws.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx_cheng应助lilila666采纳,获得30
3秒前
5秒前
5秒前
6秒前
8秒前
Xiaoyang完成签到,获得积分10
8秒前
loski发布了新的文献求助10
8秒前
9秒前
虚心月饼发布了新的文献求助10
10秒前
11秒前
Lucas应助123采纳,获得10
13秒前
香蕉觅云应助KIORking采纳,获得10
14秒前
14秒前
Liufgui应助执着又蓝采纳,获得20
15秒前
15秒前
正直水池完成签到 ,获得积分10
15秒前
15秒前
阿克完成签到,获得积分10
15秒前
一方通行发布了新的文献求助10
16秒前
perovskite完成签到,获得积分10
16秒前
如梦如幻91完成签到,获得积分10
16秒前
16秒前
16秒前
妮露的修狗完成签到,获得积分10
17秒前
18秒前
19秒前
文献发布了新的文献求助30
21秒前
无花果应助我不吃胡萝卜采纳,获得10
22秒前
22秒前
23秒前
自信的电灯胆完成签到,获得积分20
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
26秒前
清辉夜凝发布了新的文献求助10
26秒前
28秒前
少敏敏发布了新的文献求助10
29秒前
30秒前
嘻哈发布了新的文献求助10
32秒前
苏y发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173