Spatially adaptive multi-scale image enhancement based on nonsubsampled contourlet transform

轮廓波 伽马校正 人工智能 计算机科学 亮度 亮度 直方图均衡化 模式识别(心理学) 对比度(视觉) 计算机视觉 自适应直方图均衡化 图像(数学) 直方图 小波 光学 小波变换 物理
作者
Zhenghua Huang,Xuan Li,Lei Wang,Hao Fang,Lei Ma,Yu Shi,Hanyu Hong
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:121: 104014-104014 被引量:25
标识
DOI:10.1016/j.infrared.2021.104014
摘要

• Proposed a novel enhancement framework for uneven intensity correction. • Base image enhancement with spatially adaptive gamma correction. • Different adaptive correction parameters for enhancing multi-scale detail layers. Low or uneven luminance results in low contrast of near-infrared and optical remote sensing images, making it challenging to analyze their contents. Traditional image enhancement methods cannot simultaneously take detail preservation, contrast enhancement, and brightness improvement into account. In order to cope with this problem, this paper proposes a spatially adaptive multi-scale image enhancement (SAMSIE) scheme, including three key procedures: First, nonsubsampled contourlet transform (NSCT) is employed to decompose a low-contrast image into multi-scale layers. Second, a spatially adaptive Gamma correction strategy based on improved histogram equalization is proposed to enhance the base layer which is used as a guide layer. Third, an adaptive enhancement operator is proposed to enhance fine details. Finally, a high-contrast optical infrared image is obtained by the inverse NSCT with usage of these enhanced layers. The effectiveness of the proposed SAMSIE method is validated by both visualization assess and the evaluation of three quantitative indexes including discrete entropy (DE), contrast gain (CG), and mean brightness improvement (MBI), with comparison of the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhang发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
TreyE发布了新的文献求助10
3秒前
青芒果发布了新的文献求助10
4秒前
完美世界应助韩十四采纳,获得10
6秒前
6秒前
婷婷发布了新的文献求助10
6秒前
6秒前
lunlun发布了新的文献求助30
7秒前
7秒前
8秒前
吕敬瑶发布了新的文献求助10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
qiqi完成签到,获得积分10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
田様应助周七七采纳,获得10
9秒前
SciGPT应助锅包肉采纳,获得10
10秒前
10秒前
Akim应助小叶采纳,获得10
10秒前
慕青应助fun采纳,获得10
10秒前
张紫怡发布了新的文献求助10
11秒前
nnNN_happy发布了新的文献求助10
11秒前
12秒前
12秒前
Dpj发布了新的文献求助10
13秒前
灵巧妙芙发布了新的文献求助10
13秒前
13秒前
win完成签到 ,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593