衰老
间充质干细胞
生物
端粒
细胞生物学
干细胞
表观遗传学
遗传学
基因
作者
Yi Li,Qiong Wu,Yujia Wang,Li Li,Hong Bu,Ji Bao
标识
DOI:10.3892/ijmm.2017.2912
摘要
Mesenchymal stem cells (MSCs) have been used in cell-based therapy for various diseases, due to their immunomodulatory and inflammatory effects. However, the function of MSCs is known to decline with age, a process that is called senescence. To date, the process of MSC senescence remains unknown as in-depth understanding of the mechanisms involved in cellular senescence is lacking. First, senescent MSCs are so heterogeneous that not all of them express the same phenotypic markers. In addition, the genes and signaling pathways which regulate this process in MSCs are still unknown. Thus, an understanding of the molecular processes controlling MSC senescence is crucial to determining the drivers and effectors of age-associated MSC dysfunction. Moreover, the proper use of MSCs for clinical application requires a general understanding of the MSC aging process. Furthermore, such knowledge is essential for the development of therapeutic interventions that can slow or reverse age-related degenerative changes to enhance repair processes and maintain healthy function in aging tissues. To further clarify the properties of senescent cells, as well as to present significant findings from studies on the mechanisms of cellular aging, we summarize these biological features in the senescence of MSCs in this scenario. This review summarizes recent advances in our understanding of the markers and differentiation potential indicating MSC senescence, as well as factors affecting MSC senescence with particular emphasis on the roles of oxidative stress, intrinsic changes in telomere shortening, histone deacetylase and DNA methyltransferase, genes and signaling pathways and immunological properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI