Dynamic PET image reconstruction using a spatial-temporal edge-preserving prior

计算机科学 平滑的 人工智能 噪音(视频) 体素 迭代重建 先验概率 滤波器(信号处理) 参数统计 计算机视觉 模式识别(心理学) 算法 图像(数学) 数学 贝叶斯概率 统计
作者
Zhaoying Bian,Jianhua Ma,Lijun Lu,Jing Huang,Hua Zhang,Wufan Chen
标识
DOI:10.1109/nssmic.2013.6829218
摘要

Dynamic positron emission tomography (PET) imaging provides important quantitative information of physiological and biochemical processes in humans and animals. However, due to short-time acquisitions to obtain a time sequence of images for parametric imaging, the signal-to-noise ratio of measurement data in each time frame is often very low, which leads the dynamic PET image reconstruction to be a challenging task. And some noticeable errors are inevitable transferred to the voxel-wise kinetic parameter imaging from the associative noisy TAC measurements. To tackle this problem, maximum a posteriori (MAP) statistical reconstruction methods are widely used by incorporating some prior information. Conventional priors focus on local neighborhoods in individual image frames and subsequently penalize inter-voxel intensity differences through different penalty functions such as the quadratic membrane smoothing prior and non-quadratic edge-preserving prior, failing to explore the temporal information of dynamic PET data. In this paper, we design a spatial-temporal edge-preserving (STEP) prior model under the framework of bilateral filter by considering both the spatial local neighborhoods and the temporal kinetic information. Experimental results via a computer simulation study demonstrate that the present dynamic PET reconstruction method with the STEP prior can achieve noticeable gains than the conventional Huber prior in term of signal-to-noise and bias-variance evaluations for the parametric images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助神勇的白竹采纳,获得10
刚刚
丘比特应助阿龙采纳,获得10
刚刚
刘春林完成签到,获得积分10
刚刚
刚刚
金子俊关注了科研通微信公众号
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
踏实的绝悟完成签到 ,获得积分10
2秒前
小苏苏发布了新的文献求助10
2秒前
2秒前
小马甲应助文献狂人采纳,获得10
3秒前
英姑应助zhhhhh采纳,获得10
4秒前
7777juju完成签到,获得积分10
4秒前
安寒完成签到,获得积分10
4秒前
钉钉发布了新的文献求助50
4秒前
Connie完成签到,获得积分10
5秒前
5秒前
善学以致用应助方子怡采纳,获得10
6秒前
6秒前
6秒前
GuoSiqi72应助lmr采纳,获得10
6秒前
wanci应助李建行采纳,获得10
6秒前
奋斗思柔发布了新的文献求助10
7秒前
慧子朱完成签到,获得积分20
7秒前
7秒前
情怀应助FF采纳,获得10
7秒前
7秒前
秀丽绿真发布了新的文献求助10
8秒前
8秒前
mia完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556