Dynamic PET image reconstruction using a spatial-temporal edge-preserving prior

计算机科学 平滑的 人工智能 噪音(视频) 体素 迭代重建 先验概率 滤波器(信号处理) 参数统计 计算机视觉 模式识别(心理学) 算法 图像(数学) 数学 贝叶斯概率 统计
作者
Zhaoying Bian,Jianhua Ma,Lijun Lu,Jing Huang,Hua Zhang,Wufan Chen
标识
DOI:10.1109/nssmic.2013.6829218
摘要

Dynamic positron emission tomography (PET) imaging provides important quantitative information of physiological and biochemical processes in humans and animals. However, due to short-time acquisitions to obtain a time sequence of images for parametric imaging, the signal-to-noise ratio of measurement data in each time frame is often very low, which leads the dynamic PET image reconstruction to be a challenging task. And some noticeable errors are inevitable transferred to the voxel-wise kinetic parameter imaging from the associative noisy TAC measurements. To tackle this problem, maximum a posteriori (MAP) statistical reconstruction methods are widely used by incorporating some prior information. Conventional priors focus on local neighborhoods in individual image frames and subsequently penalize inter-voxel intensity differences through different penalty functions such as the quadratic membrane smoothing prior and non-quadratic edge-preserving prior, failing to explore the temporal information of dynamic PET data. In this paper, we design a spatial-temporal edge-preserving (STEP) prior model under the framework of bilateral filter by considering both the spatial local neighborhoods and the temporal kinetic information. Experimental results via a computer simulation study demonstrate that the present dynamic PET reconstruction method with the STEP prior can achieve noticeable gains than the conventional Huber prior in term of signal-to-noise and bias-variance evaluations for the parametric images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
阿kkk完成签到,获得积分10
4秒前
4秒前
大个应助新的旅程采纳,获得10
4秒前
GZ了呀完成签到,获得积分20
5秒前
鹿小娇关注了科研通微信公众号
6秒前
科目三应助一滴水采纳,获得30
6秒前
wangrswjx完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
liwu完成签到 ,获得积分10
9秒前
现代孤晴完成签到,获得积分10
10秒前
jeronimo完成签到,获得积分10
10秒前
旋转鸡爪子应助1900采纳,获得10
10秒前
pluto应助阿维采纳,获得10
11秒前
12秒前
你吼发布了新的文献求助10
13秒前
易达发布了新的文献求助30
13秒前
PL发布了新的文献求助10
15秒前
15秒前
西瓜完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
16秒前
功不唐捐发布了新的文献求助10
17秒前
bkagyin应助封皮人采纳,获得10
18秒前
nan发布了新的文献求助10
18秒前
雪糕发布了新的文献求助10
19秒前
19秒前
33发布了新的文献求助10
19秒前
fouding发布了新的文献求助10
20秒前
隐形曼青应助ttttt采纳,获得10
20秒前
song给song的求助进行了留言
21秒前
木木发布了新的文献求助10
22秒前
哈哈完成签到,获得积分10
22秒前
23秒前
wangmou完成签到,获得积分10
23秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070