计算机科学
大数据
保险丝(电气)
数据流挖掘
数据挖掘
事件(粒子物理)
登普斯特-沙弗理论
数据建模
传感器融合
智能交通系统
流量(计算机网络)
人工智能
数据流
深度学习
机器学习
工程类
数据库
电气工程
土木工程
物理
电信
量子力学
计算机安全
作者
Ridha Soua,Arief Koesdwiady,Fakhri Karray
标识
DOI:10.1109/ijcnn.2016.7727607
摘要
This work addresses short-term traffic flow prediction by proposing a big-data-based framework. The proposed framework uses data fusion to deal with heterogeneous data generated from various sources. The data are categorized into two types: streams of data and event-based data. In this work, Deep Belief Networks (DBNs) are used to independently predict traffic flow using streams of data, i.e., historical traffic flow and weather data, and event-based data, i.e., tweets. Furthermore, Dempster's conditional rule for updating belief is used to fuse evidence coming from streams of data and event-based data modules to achieve enhanced prediction. The experimental results using real-world data show the merit of the proposed framework compared to the state-of-the-art ones.
科研通智能强力驱动
Strongly Powered by AbleSci AI