Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gf完成签到,获得积分10
1秒前
俏皮诺言完成签到,获得积分10
4秒前
用户5063899完成签到,获得积分10
4秒前
大有阳光应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
tuanheqi应助科研通管家采纳,获得50
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
暮霭沉沉应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
时间煮雨我煮鱼完成签到,获得积分10
6秒前
tianzml0举报木木啊求助涉嫌违规
6秒前
aaa完成签到,获得积分10
8秒前
wahaha完成签到,获得积分10
9秒前
几酌给nixx的求助进行了留言
12秒前
ntrip完成签到,获得积分10
13秒前
13秒前
炸鸡完成签到,获得积分10
16秒前
yyyy发布了新的文献求助50
17秒前
大尧子完成签到 ,获得积分10
18秒前
tivyg'lk完成签到,获得积分10
18秒前
白日幻想家完成签到 ,获得积分10
19秒前
慌慌完成签到 ,获得积分10
19秒前
第八号当铺完成签到,获得积分10
20秒前
beizn1214发布了新的文献求助10
22秒前
情怀应助huangr123采纳,获得80
22秒前
祗想静静嘚完成签到 ,获得积分10
23秒前
追风少年完成签到,获得积分10
25秒前
鲤鱼怀绿完成签到,获得积分10
26秒前
山茶发布了新的文献求助10
28秒前
毕节发布了新的文献求助10
29秒前
29秒前
王ml发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175