亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助红娘采纳,获得10
1秒前
6秒前
清脆的飞丹完成签到,获得积分10
29秒前
58秒前
1分钟前
Allen发布了新的文献求助30
1分钟前
红娘发布了新的文献求助10
1分钟前
yingwang完成签到 ,获得积分10
1分钟前
1分钟前
红娘完成签到,获得积分10
1分钟前
1分钟前
飞天大南瓜完成签到,获得积分10
1分钟前
笑点低的斑马完成签到,获得积分10
1分钟前
橙子完成签到 ,获得积分10
1分钟前
铭铭铭完成签到,获得积分10
1分钟前
科研通AI6应助Allen采纳,获得10
1分钟前
共享精神应助起名太难了采纳,获得10
1分钟前
2分钟前
2分钟前
taster发布了新的文献求助10
2分钟前
2分钟前
春秋发布了新的文献求助10
2分钟前
搜集达人应助taster采纳,获得10
2分钟前
2分钟前
春秋完成签到,获得积分20
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
困困发布了新的文献求助10
2分钟前
困困完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
顾矜应助sanner采纳,获得10
3分钟前
情怀应助Alay采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
sanner发布了新的文献求助10
3分钟前
3分钟前
Alay发布了新的文献求助10
3分钟前
科研通AI6应助sanner采纳,获得10
3分钟前
小西完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365