亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harri完成签到,获得积分10
5秒前
12秒前
美满尔蓝完成签到,获得积分10
15秒前
P_Chem完成签到,获得积分10
16秒前
socras完成签到 ,获得积分10
17秒前
18秒前
心灵美语兰完成签到 ,获得积分10
33秒前
美好灵寒完成签到 ,获得积分10
52秒前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
猫猫豆包完成签到,获得积分10
1分钟前
Orange应助儒雅的冥王星采纳,获得100
1分钟前
1分钟前
笑傲完成签到,获得积分10
2分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
henrychen完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
隐形曼青应助科研小贩采纳,获得10
6分钟前
ranj完成签到,获得积分10
6分钟前
上官若男应助金水相生采纳,获得10
6分钟前
7分钟前
调皮千兰发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
sujiaoziemo完成签到,获得积分10
7分钟前
zzw18512467916完成签到,获得积分10
7分钟前
8分钟前
完美世界应助调皮千兰采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899