亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
李爱国应助忧伤的觅荷采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助百里幻竹采纳,获得10
28秒前
35秒前
百里幻竹发布了新的文献求助10
41秒前
mickaqi完成签到 ,获得积分10
49秒前
54秒前
婼汐完成签到 ,获得积分10
1分钟前
叛逆黑洞完成签到 ,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Hello应助淡然的妙芙采纳,获得10
2分钟前
SciGPT应助彭佳丽采纳,获得10
2分钟前
酷波er应助伯云采纳,获得30
3分钟前
3分钟前
3分钟前
彭佳丽完成签到,获得积分10
3分钟前
彭佳丽发布了新的文献求助10
3分钟前
yy发布了新的文献求助10
3分钟前
归海浩阑完成签到,获得积分10
3分钟前
zxq完成签到 ,获得积分10
3分钟前
3分钟前
yy完成签到 ,获得积分10
3分钟前
3分钟前
Anto完成签到,获得积分10
3分钟前
田様应助淡然的妙芙采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Leedesweet发布了新的文献求助10
4分钟前
5分钟前
5分钟前
美满尔蓝完成签到,获得积分10
5分钟前
星星完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
123发布了新的文献求助10
6分钟前
Akim应助杨锐采纳,获得10
6分钟前
Rainbow完成签到 ,获得积分0
7分钟前
虚拟的清炎完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910016
求助须知:如何正确求助?哪些是违规求助? 4186051
关于积分的说明 12998976
捐赠科研通 3953280
什么是DOI,文献DOI怎么找? 2167874
邀请新用户注册赠送积分活动 1186317
关于科研通互助平台的介绍 1093336