Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny发布了新的文献求助10
刚刚
fzh发布了新的文献求助10
3秒前
3秒前
4秒前
7秒前
KYTYYDS发布了新的文献求助10
8秒前
HanluMa完成签到 ,获得积分10
8秒前
fzh完成签到,获得积分10
12秒前
Jenny完成签到,获得积分10
14秒前
伟立完成签到,获得积分10
14秒前
21秒前
22秒前
然12138完成签到 ,获得积分10
22秒前
香蕉觅云应助SnownS采纳,获得10
22秒前
川荣李奈完成签到 ,获得积分10
26秒前
xinbowey发布了新的文献求助10
26秒前
火星上向珊完成签到,获得积分10
29秒前
31秒前
柳条儿完成签到,获得积分10
31秒前
如意幻枫完成签到,获得积分10
35秒前
36秒前
36秒前
渔婆发布了新的文献求助10
37秒前
39秒前
风趣的泥猴桃完成签到 ,获得积分10
40秒前
40秒前
zgsjymysmyy发布了新的文献求助30
41秒前
fuchao完成签到,获得积分10
41秒前
牧谷发布了新的文献求助10
42秒前
好吃的火龙果完成签到 ,获得积分10
43秒前
天边发布了新的文献求助10
44秒前
东方越彬发布了新的文献求助10
45秒前
赘婿应助sunny采纳,获得10
45秒前
45秒前
45秒前
SnownS完成签到,获得积分10
46秒前
123123发布了新的文献求助10
50秒前
SnownS发布了新的文献求助10
51秒前
51秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566