A Survey on Deep Learning

深度学习 计算机科学 人工智能 卷积神经网络 深信不疑网络 机器学习 无监督学习 领域(数学) 计算学习理论 数据科学 算法学习理论 领域(数学分析) 基于实例的学习 对抗制 数学分析 数学 纯数学
作者
Samira Pouyanfar,Saad Sadiq,Yilin Yan,Haiman Tian,Yudong Tao,Maria Presa Reyes,Mei‐Ling Shyu,Shu‐Ching Chen,S. S. Iyengar
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:51 (5): 1-36 被引量:1068
标识
DOI:10.1145/3234150
摘要

The field of machine learning is witnessing its golden era as deep learning slowly becomes the leader in this domain. Deep learning uses multiple layers to represent the abstractions of data to build computational models. Some key enabler deep learning algorithms such as generative adversarial networks, convolutional neural networks, and model transfers have completely changed our perception of information processing. However, there exists an aperture of understanding behind this tremendously fast-paced domain, because it was never previously represented from a multiscope perspective. The lack of core understanding renders these powerful methods as black-box machines that inhibit development at a fundamental level. Moreover, deep learning has repeatedly been perceived as a silver bullet to all stumbling blocks in machine learning, which is far from the truth. This article presents a comprehensive review of historical and recent state-of-the-art approaches in visual, audio, and text processing; social network analysis; and natural language processing, followed by the in-depth analysis on pivoting and groundbreaking advances in deep learning applications. It was also undertaken to review the issues faced in deep learning such as unsupervised learning, black-box models, and online learning and to illustrate how these challenges can be transformed into prolific future research avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺凯完成签到,获得积分10
1秒前
慕青应助kunkun采纳,获得10
2秒前
3秒前
健忘傲柏完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
8秒前
领导范儿应助猫与咖啡采纳,获得10
8秒前
竹筏过海应助bingchem采纳,获得30
8秒前
9秒前
yangya发布了新的文献求助100
10秒前
11秒前
忘久完成签到,获得积分10
11秒前
12秒前
鱿鱼炒黄瓜完成签到,获得积分10
13秒前
CipherSage应助旧辞采纳,获得10
14秒前
zp发布了新的文献求助10
14秒前
似鱼发布了新的文献求助10
14秒前
14秒前
科研通AI5应助研究牲采纳,获得10
15秒前
wanci应助hob采纳,获得10
17秒前
17秒前
8R60d8应助随风采纳,获得10
18秒前
amber发布了新的文献求助10
19秒前
李健应助Migrol采纳,获得10
20秒前
木子应助keyanzhazha采纳,获得50
21秒前
Akim应助邱辛瑶采纳,获得30
21秒前
欧了买了噶完成签到,获得积分10
22秒前
22秒前
如初完成签到,获得积分10
23秒前
赘婿应助从容的皮卡丘采纳,获得10
23秒前
实验顺利发布了新的文献求助30
24秒前
melon完成签到,获得积分10
25秒前
似鱼完成签到,获得积分10
25秒前
George发布了新的文献求助30
25秒前
科研通AI5应助科研通管家采纳,获得30
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427