亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of machine learning to predict early biochemical recurrence after robot‐assisted prostatectomy

逻辑回归 随机森林 人工智能 机器学习 前列腺切除术 决策树 医学 回归 回归分析 前列腺癌 统计 计算机科学 内科学 数学 癌症
作者
Nathan C. Wong,Cameron J. Lam,Lisa Patterson,Bobby Shayegan
出处
期刊:BJUI [Wiley]
卷期号:123 (1): 51-57 被引量:89
标识
DOI:10.1111/bju.14477
摘要

To train and compare machine-learning algorithms with traditional regression analysis for the prediction of early biochemical recurrence after robot-assisted prostatectomy.A prospectively collected dataset of 338 patients who underwent robot-assisted prostatectomy for localized prostate cancer was examined. We used three supervised machine-learning algorithms and 19 different training variables (demographic, clinical, imaging and operative data) in a hypothesis-free manner to build models that could predict patients with biochemical recurrence at 1 year. We also performed traditional Cox regression analysis for comparison.K-nearest neighbour, logistic regression and random forest classifier were used as machine-learning models. Classic Cox regression analysis had an area under the curve (AUC) of 0.865 for the prediction of biochemical recurrence. All three of our machine-learning models (K-nearest neighbour (AUC 0.903), random forest tree (AUC 0.924) and logistic regression (AUC 0.940) outperformed the conventional statistical regression model. Accuracy prediction scores for K-nearest neighbour, random forest tree and logistic regression were 0.976, 0.953 and 0.976, respectively.Machine-learning techniques can produce accurate disease predictability better that traditional statistical regression. These tools may prove clinically useful for the automated prediction of patients who develop early biochemical recurrence after robot-assisted prostatectomy. For these patients, appropriate individualized treatment options can improve outcomes and quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的含烟完成签到,获得积分10
5秒前
嘻嘻完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
2分钟前
夏日香气完成签到 ,获得积分10
3分钟前
Ava应助pepper采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
咯咯咯完成签到 ,获得积分10
4分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
pepper完成签到,获得积分20
6分钟前
6分钟前
飞快的孱发布了新的文献求助10
6分钟前
pepper发布了新的文献求助10
6分钟前
标致的泥猴桃完成签到,获得积分10
6分钟前
笨笨山芙完成签到 ,获得积分10
6分钟前
CH完成签到 ,获得积分10
7分钟前
李佳倩完成签到 ,获得积分10
7分钟前
阿狸完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
Koala04完成签到,获得积分10
8分钟前
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
飞快的孱发布了新的文献求助10
8分钟前
8分钟前
jitianxing发布了新的文献求助10
8分钟前
9分钟前
9分钟前
科研通AI5应助jitianxing采纳,获得10
11分钟前
我是老大应助科研通管家采纳,获得10
11分钟前
forest完成签到,获得积分10
12分钟前
12分钟前
jitianxing发布了新的文献求助10
12分钟前
vbnn完成签到 ,获得积分10
12分钟前
冷傲半邪完成签到,获得积分10
12分钟前
无幻完成签到 ,获得积分10
12分钟前
松松完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082