Development of an innovative technology to segment luminal borders of intravascular ultrasound image sequences in a fully automated manner

血管内超声 计算机科学 笔记本电脑 人工智能 图像处理 模式识别(心理学) 计算机视觉 图像(数学) 放射科 医学 操作系统
作者
Abouzar Moshfegh,Ashkan Javadzadegan,Maryam Mohammadi,Lakshitha Ravipudi,Shaokoon Cheng,Ralph N. Martins
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:108: 111-121 被引量:6
标识
DOI:10.1016/j.compbiomed.2019.03.008
摘要

Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method. The performance of the computer algorithm developed based on this technology was tested on a sequence of IVUS and True Vessel Characterization (TVC) images obtained from the left anterior descending (LAD) artery of 6 patients with coronary artery disease. The accuracy of the algorithm was evaluated by comparing luminal borders traced manually with those detected automatically. The processing time of the developed algorithm was also tested on a Dell laptop with an Intel Core i7-8750H Processor (4.1 GHz with 6 cores, 9 MB Cache). Linear regression and Bland-Altman analyses indicated high correlation between manual and automatic tracings (Y = 0.80 × X+1.70, R2 = 0.88 & 0.67 ± 1.31 (bias±SD)). Whereas analysis of 2000 IVUS images using one CPU core with a 30% load took 23.12 min, the same analysis using six CPU cores with 90% load took 1.0 min. The performance, accuracy, and speed of the presented state-of-the-art technology demonstrates its capacity for use in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
1秒前
tang完成签到,获得积分10
1秒前
jxz发布了新的文献求助50
2秒前
酷炫大白发布了新的文献求助10
2秒前
bkagyin应助mkmimii采纳,获得10
4秒前
彬彬发布了新的文献求助10
4秒前
8秒前
冷静无心完成签到,获得积分10
9秒前
9秒前
Orange应助liuyc采纳,获得10
10秒前
10秒前
科研通AI2S应助Felix采纳,获得10
12秒前
SYLH应助Xiaoguangguang采纳,获得10
12秒前
小甑发布了新的文献求助20
12秒前
余111发布了新的文献求助10
13秒前
16秒前
高大若云发布了新的文献求助10
17秒前
17秒前
打打应助酷炫大白采纳,获得10
17秒前
cassie发布了新的文献求助10
18秒前
我是老大应助jxz采纳,获得10
19秒前
19秒前
20秒前
21秒前
左手树完成签到,获得积分10
21秒前
万能图书馆应助小甑采纳,获得10
21秒前
wjw发布了新的文献求助10
22秒前
ueue发布了新的文献求助30
22秒前
Xieyusen发布了新的文献求助10
23秒前
枫也发布了新的文献求助10
24秒前
pink完成签到,获得积分10
24秒前
小马甲应助69采纳,获得10
24秒前
苏silence发布了新的文献求助10
25秒前
25秒前
乐乐应助liuyc采纳,获得10
28秒前
29秒前
天天快乐应助以筱采纳,获得10
30秒前
治神守气完成签到,获得积分20
31秒前
32秒前
科研通AI2S应助Lyl采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517