Development of an innovative technology to segment luminal borders of intravascular ultrasound image sequences in a fully automated manner

血管内超声 计算机科学 笔记本电脑 人工智能 图像处理 模式识别(心理学) 计算机视觉 图像(数学) 放射科 医学 操作系统
作者
Abouzar Moshfegh,Ashkan Javadzadegan,Maryam Mohammadi,Lakshitha Ravipudi,Shaokoon Cheng,Ralph N. Martins
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:108: 111-121 被引量:6
标识
DOI:10.1016/j.compbiomed.2019.03.008
摘要

Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method. The performance of the computer algorithm developed based on this technology was tested on a sequence of IVUS and True Vessel Characterization (TVC) images obtained from the left anterior descending (LAD) artery of 6 patients with coronary artery disease. The accuracy of the algorithm was evaluated by comparing luminal borders traced manually with those detected automatically. The processing time of the developed algorithm was also tested on a Dell laptop with an Intel Core i7-8750H Processor (4.1 GHz with 6 cores, 9 MB Cache). Linear regression and Bland-Altman analyses indicated high correlation between manual and automatic tracings (Y = 0.80 × X+1.70, R2 = 0.88 & 0.67 ± 1.31 (bias±SD)). Whereas analysis of 2000 IVUS images using one CPU core with a 30% load took 23.12 min, the same analysis using six CPU cores with 90% load took 1.0 min. The performance, accuracy, and speed of the presented state-of-the-art technology demonstrates its capacity for use in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vkl完成签到 ,获得积分10
1秒前
1秒前
Orange应助灰色与青采纳,获得10
2秒前
黑水仙完成签到 ,获得积分10
5秒前
6秒前
7秒前
小二郎应助南宫碧采纳,获得10
12秒前
三三三木发布了新的文献求助10
12秒前
一往之前发布了新的文献求助10
13秒前
常常发布了新的文献求助10
15秒前
兢兢业业者完成签到,获得积分20
18秒前
所所应助WANG采纳,获得10
18秒前
19秒前
智智发布了新的文献求助10
20秒前
20秒前
cocolu应助三三三木采纳,获得10
24秒前
糊涂的清醒者完成签到,获得积分10
28秒前
31秒前
31秒前
嗯哼应助wangz采纳,获得20
31秒前
32秒前
35秒前
36秒前
小马完成签到,获得积分10
37秒前
CipherSage应助J0A0采纳,获得30
38秒前
czz014完成签到,获得积分10
40秒前
Jasper应助拼搏老太采纳,获得10
40秒前
幽默的山雁完成签到,获得积分10
41秒前
43秒前
CuSO4完成签到,获得积分10
43秒前
44秒前
比奇堡艺术家完成签到,获得积分10
45秒前
45秒前
孤独的心锁完成签到,获得积分10
47秒前
47秒前
生物科研小白完成签到,获得积分10
48秒前
罗moumou完成签到,获得积分10
48秒前
48秒前
CipherSage应助小妮子采纳,获得10
48秒前
Zhangyw完成签到,获得积分10
49秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343067
求助须知:如何正确求助?哪些是违规求助? 2970100
关于积分的说明 8642882
捐赠科研通 2650096
什么是DOI,文献DOI怎么找? 1451115
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407