血管内超声
计算机科学
笔记本电脑
人工智能
图像处理
模式识别(心理学)
计算机视觉
图像(数学)
放射科
医学
操作系统
作者
Abouzar Moshfegh,Ashkan Javadzadegan,Maryam Mohammadi,Lakshitha Ravipudi,Shaokoon Cheng,Ralph N. Martins
标识
DOI:10.1016/j.compbiomed.2019.03.008
摘要
Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method. The performance of the computer algorithm developed based on this technology was tested on a sequence of IVUS and True Vessel Characterization (TVC) images obtained from the left anterior descending (LAD) artery of 6 patients with coronary artery disease. The accuracy of the algorithm was evaluated by comparing luminal borders traced manually with those detected automatically. The processing time of the developed algorithm was also tested on a Dell laptop with an Intel Core i7-8750H Processor (4.1 GHz with 6 cores, 9 MB Cache). Linear regression and Bland-Altman analyses indicated high correlation between manual and automatic tracings (Y = 0.80 × X+1.70, R2 = 0.88 & 0.67 ± 1.31 (bias±SD)). Whereas analysis of 2000 IVUS images using one CPU core with a 30% load took 23.12 min, the same analysis using six CPU cores with 90% load took 1.0 min. The performance, accuracy, and speed of the presented state-of-the-art technology demonstrates its capacity for use in clinical settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI