Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging

计算机科学 卷积神经网络 人工智能 奇异值分解 深度学习 帧速率 人工神经网络 成像体模 分割 计算机视觉 灵敏度(控制系统) 模式识别(心理学) 光学 物理 电子工程 工程类
作者
Katherine Brown,James D. Dormer,Baowei Fei,Kenneth Hoyt
标识
DOI:10.1117/12.2511897
摘要

Super-resolution ultrasound imaging (SR-US) is a new technique which breaks the diffraction limit and can help visualize microvascularity at a resolution of tens of microns. However, image processing methods for spatiotemporal filtering needed in SR-US for microvascular delineation, such as singular value decomposition (SVD), are computationally burdensome and must be performed off-line. The goal of this study was to evaluate a novel and fast method for spatiotemporal filtering to segment the microbubble (MB) contrast agent from the tissue signal with a trained 3D convolutional neural network (3DCNN). In vitro data was collected using a programmable ultrasound (US) imaging system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with an L11-4v linear array transducer and obtained from a tissue-mimicking vascular flow phantom at flow rates representative of microvascular conditions. SVD was used to detect MBs and label the data for training. Network performance was validated with a leave-one-out approach. The 3DCNN demonstrated a 22% higher sensitivity in MB detection than SVD on in vitro data. Further, in vivo 3DCNN results from a cancer-bearing murine model revealed a high level of detail in the SR-US image demonstrating the potential for transfer learning from a neural network trained with in vitro data. The preliminary performance of segmentation with the 3DCNN was encouraging for real-time SR-US imaging with computation time as low as 5 ms per frame.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
彭于晏应助金江客死采纳,获得10
刚刚
1秒前
1秒前
1秒前
BowieHuang应助香菜丸子采纳,获得10
2秒前
2秒前
3秒前
活力白竹完成签到,获得积分10
3秒前
EV完成签到,获得积分10
3秒前
蟹黄味发布了新的文献求助10
3秒前
清蒸鱼发布了新的文献求助30
3秒前
谨慎的白秋完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
zzx完成签到,获得积分10
4秒前
4秒前
4秒前
坚定的向雪完成签到,获得积分10
4秒前
自信雨安发布了新的文献求助10
5秒前
tang1发布了新的文献求助10
5秒前
6秒前
稳重口红发布了新的文献求助10
6秒前
欣欣向荣发布了新的文献求助10
7秒前
7秒前
义气丹雪应助李剑鸿采纳,获得100
7秒前
7秒前
ww发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
小马甲应助王HH采纳,获得10
8秒前
小徐发布了新的文献求助10
8秒前
8秒前
8秒前
桐桐应助yong采纳,获得10
8秒前
wesley完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807