Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging

计算机科学 卷积神经网络 人工智能 奇异值分解 深度学习 帧速率 人工神经网络 成像体模 分割 计算机视觉 灵敏度(控制系统) 模式识别(心理学) 光学 物理 电子工程 工程类
作者
Katherine Brown,James D. Dormer,Baowei Fei,Kenneth Hoyt
标识
DOI:10.1117/12.2511897
摘要

Super-resolution ultrasound imaging (SR-US) is a new technique which breaks the diffraction limit and can help visualize microvascularity at a resolution of tens of microns. However, image processing methods for spatiotemporal filtering needed in SR-US for microvascular delineation, such as singular value decomposition (SVD), are computationally burdensome and must be performed off-line. The goal of this study was to evaluate a novel and fast method for spatiotemporal filtering to segment the microbubble (MB) contrast agent from the tissue signal with a trained 3D convolutional neural network (3DCNN). In vitro data was collected using a programmable ultrasound (US) imaging system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with an L11-4v linear array transducer and obtained from a tissue-mimicking vascular flow phantom at flow rates representative of microvascular conditions. SVD was used to detect MBs and label the data for training. Network performance was validated with a leave-one-out approach. The 3DCNN demonstrated a 22% higher sensitivity in MB detection than SVD on in vitro data. Further, in vivo 3DCNN results from a cancer-bearing murine model revealed a high level of detail in the SR-US image demonstrating the potential for transfer learning from a neural network trained with in vitro data. The preliminary performance of segmentation with the 3DCNN was encouraging for real-time SR-US imaging with computation time as low as 5 ms per frame.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YK完成签到,获得积分10
1秒前
打打应助Flong采纳,获得10
1秒前
岁岁菌完成签到,获得积分10
2秒前
jjh发布了新的文献求助10
2秒前
3秒前
3秒前
Jasper应助zlw121采纳,获得10
3秒前
3秒前
香蕉觅云应助陌陌采纳,获得10
4秒前
领导范儿应助雨群采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
耍酷雁风发布了新的文献求助10
5秒前
huangsile发布了新的文献求助10
5秒前
星辰大海应助gq采纳,获得10
5秒前
CROWN发布了新的文献求助10
6秒前
FAKER发布了新的文献求助30
6秒前
7秒前
8秒前
8秒前
科研通AI6应助识途采纳,获得10
8秒前
酷炫冬日关注了科研通微信公众号
8秒前
9秒前
虚幻百川应助iKYy采纳,获得10
9秒前
10秒前
10秒前
芝士小熊发布了新的文献求助10
11秒前
11秒前
callmecjh完成签到,获得积分10
11秒前
谷青完成签到,获得积分10
12秒前
小鳄鱼夸夸完成签到,获得积分10
12秒前
12秒前
yutingemail发布了新的文献求助10
12秒前
freyaaaaa应助半颜采纳,获得30
12秒前
12秒前
汉堡包应助诚心不凡采纳,获得10
13秒前
表示肯定发布了新的文献求助10
13秒前
15秒前
慕青应助科研渣渣采纳,获得10
15秒前
Akim应助star采纳,获得10
15秒前
晴朗完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507809
求助须知:如何正确求助?哪些是违规求助? 4603354
关于积分的说明 14484843
捐赠科研通 4537308
什么是DOI,文献DOI怎么找? 2486632
邀请新用户注册赠送积分活动 1469167
关于科研通互助平台的介绍 1441536