Using Semantic Clustering And Autoencoders For Detecting Novelty In Corpora Of Short Texts

自编码 计算机科学 聚类分析 人工智能 新颖性 自然语言处理 嵌入 空格(标点符号) 降维 机器学习 模式识别(心理学) 情报检索 深度学习 神学 操作系统 哲学
作者
Mei Mei,Xinyu Guo,Belinda C. Williams,Simona Doboli,Jared B. Kenworthy,Paul B. Paulus,Ali A. Minai
标识
DOI:10.1109/ijcnn.2018.8489431
摘要

Semantic analysis of text corpora is of broad utility, including for data from conversations, on-line chats, brainstorming sessions, comments on blogs, etc. - all of which are potentially interesting sources of information and ideas. In the present paper, we look at data from a large group brainstorming experiment that generated thousands of mostly brief statements. The ultimate goal is to detect which statements are semantically atypical within the overall corpus. In contexts such as spam detection or detection of on-line intrusions, autoencoders have been used successfully to separate typical from atypical data, and we consider this approach in the present paper. Texts are embedded in a semantic space obtained through topic analysis, and an autoencoder network is used to reconstruct each embedded text. The results show that, while difficulty of reconstruction is related to quantitative measures of atypicality in the embedding vector space, it is not well correlated with novelty assignments made by a human rater. However, this is not the case when the data is first clustered in the embedding space: The reconstruction error for each data cluster indicates that some clusters represent more novel data than others, and that the inverse size of the cluster and the mean reconstruction error of the texts in the cluster capture this well. In particular, autoencoders that enforce dimensionality reduction improve discrimination. The results also show that, in the reconstruction process, the autoencoder implicitly discovers the same clusters in the data that are discovered explicitly by an optimized k-means approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助小七采纳,获得10
1秒前
emma发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
ssxw发布了新的文献求助10
4秒前
Aurora完成签到,获得积分10
4秒前
4秒前
chen发布了新的文献求助10
6秒前
gyd发布了新的文献求助10
6秒前
6秒前
7秒前
Orange应助早睡不掉头发采纳,获得10
7秒前
NikiJu完成签到,获得积分10
7秒前
msn00完成签到,获得积分10
7秒前
Dr_Zhang完成签到 ,获得积分10
7秒前
ding应助伶俐的夜香采纳,获得10
8秒前
fangchenxi完成签到,获得积分10
8秒前
ltc0728完成签到,获得积分10
8秒前
8秒前
言希发布了新的文献求助10
9秒前
9秒前
Master发布了新的文献求助10
10秒前
10秒前
坦率的匪应助优雅翎采纳,获得10
10秒前
香蕉觅云应助林屿溪采纳,获得10
10秒前
方方方方方完成签到,获得积分10
13秒前
Lqiang发布了新的文献求助10
14秒前
FrozNineTivus完成签到,获得积分10
15秒前
16秒前
16秒前
philospipi应助rio采纳,获得10
18秒前
冷香咖啡完成签到,获得积分10
18秒前
李健的小迷弟应助fixing采纳,获得10
19秒前
小七发布了新的文献求助10
20秒前
20秒前
22秒前
充电宝应助Aurora采纳,获得10
22秒前
哭泣的麦当劳完成签到 ,获得积分10
22秒前
搜集达人应助evelsing采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182