Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine

电池(电) 支持向量机 健康状况 电池组 电动汽车 计算机科学 荷电状态 工程类 人工智能 汽车工程 功率(物理) 量子力学 物理
作者
Xuning Feng,Caihao Weng,Xiangming He,Xuebing Han,Languang Lu,Dongsheng Ren,Minggao Ouyang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (9): 8583-8592 被引量:365
标识
DOI:10.1109/tvt.2019.2927120
摘要

The online estimation of battery state-of-health (SOH) is an ever significant issue for the intelligent energy management of the autonomous electric vehicles. Machine-learning based approaches are promising for the online SOH estimation. This paper proposes a machine-learning based algorithm for the online SOH estimation of Li-ion battery. A predictive diagnosis model used in the algorithm is established based on support vector machine (SVM). The support vectors, which reflects the intrinsic characteristics of the Li-ion battery, are determined from the charging data of fresh cells. Furthermore, the coefficients of the SVMs for cells at different SOH are identified once the support vectors are determined. The algorithm functions by comparing partial charging curves with the stored SVMs. Similarity factor is defined after comparison to quantify the SOH of the data under evaluation. The operation of the algorithm only requires partial charging curves, e.g., 15 min charging curves, making fast on-board diagnosis of battery SOH into reality. The partial charging curves can be intercepted from a wide range of voltage section, thereby relieving the pain that there is little chance that the driver charges the battery pack from a predefined state-of-charge. Train, validation, and test are conducted for two commercial Li-ion batteries with Li(NiCoMn)1/3O2 cathode and graphite anode, indicating that the algorithm can estimate the battery SOH with less than 2% error for 80% of all the cases, and less than 3% error for 95% of all the cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
looklook发布了新的文献求助10
1秒前
lemon发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
故渊完成签到,获得积分10
6秒前
Zxx应助Coco采纳,获得10
7秒前
棋士应助Coco采纳,获得10
7秒前
xxxx完成签到,获得积分10
8秒前
8秒前
9秒前
Umar发布了新的文献求助10
9秒前
10秒前
10秒前
我是老大应助痴情的小威采纳,获得10
12秒前
13秒前
我是老大应助自自自和采纳,获得10
14秒前
小宇完成签到,获得积分10
15秒前
WRX发布了新的文献求助10
15秒前
是玥玥啊发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
臻灏发布了新的文献求助10
19秒前
19秒前
Yuanyuan发布了新的文献求助10
19秒前
19秒前
偏翩完成签到 ,获得积分10
20秒前
lemon完成签到,获得积分10
20秒前
22秒前
23秒前
麒麟完成签到,获得积分10
24秒前
24秒前
Anoxia完成签到,获得积分10
24秒前
晚晚发布了新的文献求助10
24秒前
25秒前
姜姜完成签到,获得积分10
26秒前
27秒前
CodeCraft应助鹿诗筠采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303