Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine

电池(电) 支持向量机 健康状况 电池组 电动汽车 计算机科学 荷电状态 工程类 人工智能 汽车工程 功率(物理) 量子力学 物理
作者
Xuning Feng,Caihao Weng,Xiangming He,Xuebing Han,Languang Lu,Dongsheng Ren,Minggao Ouyang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (9): 8583-8592 被引量:365
标识
DOI:10.1109/tvt.2019.2927120
摘要

The online estimation of battery state-of-health (SOH) is an ever significant issue for the intelligent energy management of the autonomous electric vehicles. Machine-learning based approaches are promising for the online SOH estimation. This paper proposes a machine-learning based algorithm for the online SOH estimation of Li-ion battery. A predictive diagnosis model used in the algorithm is established based on support vector machine (SVM). The support vectors, which reflects the intrinsic characteristics of the Li-ion battery, are determined from the charging data of fresh cells. Furthermore, the coefficients of the SVMs for cells at different SOH are identified once the support vectors are determined. The algorithm functions by comparing partial charging curves with the stored SVMs. Similarity factor is defined after comparison to quantify the SOH of the data under evaluation. The operation of the algorithm only requires partial charging curves, e.g., 15 min charging curves, making fast on-board diagnosis of battery SOH into reality. The partial charging curves can be intercepted from a wide range of voltage section, thereby relieving the pain that there is little chance that the driver charges the battery pack from a predefined state-of-charge. Train, validation, and test are conducted for two commercial Li-ion batteries with Li(NiCoMn)1/3O2 cathode and graphite anode, indicating that the algorithm can estimate the battery SOH with less than 2% error for 80% of all the cases, and less than 3% error for 95% of all the cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
青蛙旅行完成签到 ,获得积分10
1秒前
wanyou28完成签到 ,获得积分10
2秒前
cclin完成签到,获得积分10
2秒前
领导范儿应助按时下班采纳,获得10
2秒前
3秒前
科研通AI5应助ning采纳,获得10
4秒前
4秒前
Ripples完成签到 ,获得积分10
5秒前
5秒前
Grayball应助小向采纳,获得10
5秒前
leeteukxx完成签到,获得积分10
5秒前
JMH发布了新的文献求助10
5秒前
alex完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
曹曹发布了新的文献求助10
9秒前
LiAlan完成签到 ,获得积分10
9秒前
zy完成签到,获得积分10
9秒前
10秒前
迟大猫应助橙橙妈妈采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
灿2024完成签到,获得积分10
11秒前
丰富无色发布了新的文献求助10
12秒前
葛怀锐发布了新的文献求助10
12秒前
13秒前
lllllll发布了新的文献求助10
13秒前
13秒前
mnc完成签到,获得积分10
14秒前
欣欣子发布了新的文献求助10
14秒前
科研通AI5应助angelsknight采纳,获得30
15秒前
斟星发布了新的文献求助30
15秒前
睡着了吗完成签到,获得积分10
15秒前
zy发布了新的文献求助10
16秒前
16秒前
柒钺发布了新的文献求助10
16秒前
Owen应助Ti采纳,获得10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771