An Automatic Classification Method for Adolescent Idiopathic Scoliosis Based on U-net and Support Vector Machine

脊柱侧凸 人工智能 支持向量机 计算机科学 模式识别(心理学) 分割 图像分割 计算机视觉 医学 外科
作者
Zhiqiang Tan,Kai Yang,Yu Sun,Bo Wu,Shibo Li,Ying Hu,Huiren Tao
出处
期刊:Journal of Imaging Science and Technology [Society for Imaging Science & Technology]
卷期号:63 (6): 060502-13 被引量:1
标识
DOI:10.2352/j.imagingsci.technol.2019.63.6.060502
摘要

The traditional manual method for adolescent idiopathic scoliosis diagnosis suffers from observer variability. Doctors need an objective, accurate and fast detection method which would help to overcome the problem encountered by the traditional classification. This study introduces new techniques, including automatic radiograph segmentation, scoliosis measurement and classification, based on artificial intelligence. Firstly, the vertebral region in the radiograph was segmented by U-net and the scoliosis measurement was performed on the segmented image. Secondly, SVM classification was conducted by extracting the curve features in posteroanterior images and supplementary parameters in lateral and bending images. Finally, the results of automatic scoliosis measurement were compared with the one made by surgeons and the accuracy of the proposed automatic classification method was verified by a test set. The U-net segmentation model was successfully established to segment the vertebrae and the differences between the measurement results obtained by the automatic and manual measurement method were less than one degree and the accuracy of the automatic curve identification approach was found to be 100%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助澹台无采纳,获得10
刚刚
1秒前
葵花杜甫发布了新的文献求助20
1秒前
s_BuLi完成签到 ,获得积分10
1秒前
安详的断缘完成签到,获得积分10
2秒前
柳劲南完成签到,获得积分10
2秒前
kuhei发布了新的文献求助20
2秒前
4秒前
贾千兰发布了新的文献求助10
4秒前
4秒前
棍子发布了新的文献求助10
4秒前
打打应助cmuwinni采纳,获得10
5秒前
5秒前
Ultraman发布了新的文献求助10
5秒前
Hello应助su采纳,获得10
5秒前
luxiuzhen发布了新的文献求助10
6秒前
KGZW完成签到,获得积分10
6秒前
PEACE发布了新的文献求助10
7秒前
τ涛完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
大龙哥886应助顺心的觅荷采纳,获得10
8秒前
Hu发布了新的文献求助10
9秒前
9秒前
mcl发布了新的文献求助10
9秒前
纤孜叶发布了新的文献求助10
9秒前
10秒前
Jerry完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
蓝色天空完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
wanci应助ANTI采纳,获得10
12秒前
12秒前
谭鑫瑶发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095