法拉第效率
复合数
电化学
材料科学
阴极
氧化物
容量损失
化学工程
电极
复合材料
化学
冶金
物理化学
工程类
作者
Murugan Vivekanantha,Thamodaran Partheeban,Thangaian Kesavan,Chenrayan Senthil,Manickam Sasidharan
标识
DOI:10.1016/j.apsusc.2019.05.342
摘要
The surface reactivity and chemical instability of de-lithiated Li-rich layered oxide at high voltages often leads to huge irreversible capacity (IC) loss in the first cycle leading to low initial coulombic efficiency (ICE). Herein we demonstrate that simple physical mixing of electrochemically active β-MnO2 with Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 compound at different weight ratios effectively controls the initial IC loss and thereby enhances the ICE. It was observed that addition of β-MnO2 increased the ICE from 80.0% for the pristine material to 97.0% for composite containing 20 wt% β-MnO2. The dQ/dV plots of the composites showed that β-MnO2 becomes electrochemically active at lower potentials (<3.0 V) than the layered MnO2 component derived from the activation of pristine Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Identical performance of composite and pristine electrodes after first cycle activation implies that there is a synergistic electrochemical behavior between the β-MnO2 and layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Among the various composite materials with differing ratios of β-MnO2 investigated, the composite with 15 wt% β-MnO2 showed better performance in terms of deliverable capacity, material stability, and rate capability with an ICE of 94.1% compared to other composite cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI