Toward Automated 3D Spine Reconstruction from Biplanar Radiographs Using CNN for Statistical Spine Model Fitting

卷积神经网络 三维重建 人工智能 计算机科学 射线照相术 地标 迭代重建 计算机视觉 脊柱侧凸 模式识别(心理学) 医学 放射科 外科
作者
B. Aubert,Carlos Vázquez,Thierry Cresson,Stefan Parent,Jacques A. de Guise
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (12): 2796-2806 被引量:64
标识
DOI:10.1109/tmi.2019.2914400
摘要

To date, 3D spine reconstruction from biplanar radiographs involves intensive user supervision and semi-automated methods that are time-consuming and not effective in clinical routine. This paper proposes a new, fast, and automated 3D spine reconstruction method through which a realistic statistical shape model of the spine is fitted to images using convolutional neural networks (CNN). The CNNs automatically detect the anatomical landmarks controlling the spine model deformation through a hierarchical and gradual iterative process. The performance assessment used a set of 68 biplanar radiographs, composed of both asymptomatic subjects and adolescent idiopathic scoliosis patients, in order to compare automated reconstructions with ground truths build using multiple experts-supervised reconstructions. The mean (SD) errors of landmark locations (3D Euclidean distances) were 1.6 (1.3) mm, 1.8 (1.3) mm, and 2.3 (1.4) mm for the vertebral body center, endplate centers, and pedicle centers, respectively. The clinical parameters extracted from the automated 3D reconstruction (reconstruction time is less than one minute) presented an absolute mean error between 2.8° and 4.7° for the main spinal parameters and between 1° and 2.1° for pelvic parameters. Automated and expert's agreement analysis reported that, on average, 89% of automated measurements were inside the expert's confidence intervals. The proposed automated 3D spine reconstruction method provides an important step that should help the dissemination and adoption of 3D measurements in clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xl关注了科研通微信公众号
1秒前
高贵秋柳发布了新的文献求助10
2秒前
2秒前
思源应助佳佳采纳,获得10
3秒前
开心完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
雨后发布了新的文献求助20
4秒前
xiang完成签到,获得积分10
6秒前
在水一方应助Joy采纳,获得10
7秒前
7秒前
haoyunlai完成签到,获得积分20
8秒前
XZY完成签到,获得积分10
9秒前
9秒前
ARIA完成签到,获得积分10
9秒前
10秒前
anle完成签到 ,获得积分10
10秒前
10秒前
10秒前
书虫发布了新的文献求助10
10秒前
11秒前
12秒前
思源应助lys采纳,获得10
12秒前
科研通AI6应助迅速的岩采纳,获得10
12秒前
ARIA发布了新的文献求助10
12秒前
打打应助机灵的南蕾采纳,获得10
13秒前
13秒前
研友完成签到,获得积分0
15秒前
yeuic完成签到 ,获得积分10
15秒前
明亮灭绝发布了新的文献求助10
15秒前
思源应助包宇采纳,获得10
16秒前
16秒前
17秒前
求助人员发布了新的文献求助10
18秒前
专一的芯发布了新的文献求助10
19秒前
cccc关注了科研通微信公众号
19秒前
20秒前
20秒前
20秒前
21秒前
111钾1111完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571758
求助须知:如何正确求助?哪些是违规求助? 4656925
关于积分的说明 14718453
捐赠科研通 4597827
什么是DOI,文献DOI怎么找? 2523359
邀请新用户注册赠送积分活动 1494204
关于科研通互助平台的介绍 1464312