Toward Automated 3D Spine Reconstruction from Biplanar Radiographs Using CNN for Statistical Spine Model Fitting

卷积神经网络 三维重建 人工智能 计算机科学 射线照相术 地标 迭代重建 计算机视觉 脊柱侧凸 模式识别(心理学) 医学 放射科 外科
作者
B. Aubert,Carlos Vázquez,Thierry Cresson,Stefan Parent,Jacques A. de Guise
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (12): 2796-2806 被引量:44
标识
DOI:10.1109/tmi.2019.2914400
摘要

To date, 3D spine reconstruction from biplanar radiographs involves intensive user supervision and semi-automated methods that are time-consuming and not effective in clinical routine. This paper proposes a new, fast, and automated 3D spine reconstruction method through which a realistic statistical shape model of the spine is fitted to images using convolutional neural networks (CNN). The CNNs automatically detect the anatomical landmarks controlling the spine model deformation through a hierarchical and gradual iterative process. The performance assessment used a set of 68 biplanar radiographs, composed of both asymptomatic subjects and adolescent idiopathic scoliosis patients, in order to compare automated reconstructions with ground truths build using multiple experts-supervised reconstructions. The mean (SD) errors of landmark locations (3D Euclidean distances) were 1.6 (1.3) mm, 1.8 (1.3) mm, and 2.3 (1.4) mm for the vertebral body center, endplate centers, and pedicle centers, respectively. The clinical parameters extracted from the automated 3D reconstruction (reconstruction time is less than one minute) presented an absolute mean error between 2.8° and 4.7° for the main spinal parameters and between 1° and 2.1° for pelvic parameters. Automated and expert's agreement analysis reported that, on average, 89% of automated measurements were inside the expert's confidence intervals. The proposed automated 3D spine reconstruction method provides an important step that should help the dissemination and adoption of 3D measurements in clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助xmhxpz采纳,获得10
刚刚
dxh完成签到 ,获得积分10
1秒前
spark完成签到,获得积分10
1秒前
哈呵嚯嘿呀完成签到,获得积分10
1秒前
3秒前
瓦力文完成签到,获得积分10
3秒前
liuliu完成签到,获得积分10
3秒前
比奇堡第一爆破手关注了科研通微信公众号
4秒前
风筝完成签到,获得积分10
4秒前
orixero应助bofu采纳,获得10
5秒前
6秒前
nature预备军完成签到,获得积分10
6秒前
LXG666完成签到,获得积分10
6秒前
虚拟的觅山完成签到,获得积分10
7秒前
穴居人完成签到,获得积分10
7秒前
yy完成签到,获得积分10
8秒前
富二蛋发布了新的文献求助10
8秒前
激昂的千萍完成签到,获得积分10
9秒前
鲤鱼鸽子应助小鱼爱吃肉采纳,获得10
9秒前
xddll完成签到 ,获得积分10
10秒前
哈哈呀完成签到 ,获得积分10
10秒前
Salut完成签到,获得积分10
10秒前
思源应助EatFish采纳,获得10
11秒前
huco完成签到,获得积分10
11秒前
12秒前
Jere发布了新的文献求助30
13秒前
Pony发布了新的文献求助10
13秒前
快乐友灵完成签到 ,获得积分10
13秒前
dali发布了新的文献求助10
13秒前
贵花香满地完成签到,获得积分0
13秒前
华仔应助YKB采纳,获得10
14秒前
caicaikan完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
Bizibili完成签到,获得积分10
15秒前
kkk完成签到 ,获得积分10
15秒前
深情白风完成签到,获得积分10
16秒前
Leonardi应助无法企及的星辰采纳,获得200
17秒前
Lily完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303771
求助须知:如何正确求助?哪些是违规求助? 2937960
关于积分的说明 8485658
捐赠科研通 2611928
什么是DOI,文献DOI怎么找? 1426406
科研通“疑难数据库(出版商)”最低求助积分说明 662619
邀请新用户注册赠送积分活动 647170