膜
相位反转
化学工程
材料科学
纳米复合材料
X射线光电子能谱
纳米颗粒
吸附
复合数
钇
多孔性
化学
复合材料
纳米技术
有机化学
冶金
工程类
生物化学
氧化物
作者
Jinsong He,Anan Cui,Fan Ni,Shihuai Deng,Fei Shen,Chun Song,Ling Lou,Dong Tian,Churui Huang,Lulu Long
标识
DOI:10.1016/j.jcis.2018.10.064
摘要
In this study, a series of in situ-generated yttrium-based nanoparticle (NP)/polyethersulfone (PES) composite adsorptive membranes were prepared by the phase inversion method for the first time. The Y(NO3)3·6H2O as precursor, uniformly dispersed at the molecular level in casting solution, reacted with OH− in a coagulation bath and ambient CO2 during the phase inversion process. The Y(CO3)0.5(OH)2 NPs were formed in situ and distributed homogeneously in a PES matrix, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-Ray Spectroscopy (EDS) results. The compatibility of the nanocomposite membranes was improved by an in situ preparation method. With the increase in content of Y-based NPs in composite membranes, the surface hydrophilicity and water permeability first increased from M1 to M2, and then slightly decreased from M3 to M5, which was mainly related to membrane structure. From M1 to M5, the demixing way changed from instantaneous demixing to delayed demixing process as a result of thermodynamic enhancement and viscosity hindrance in the phase inversion process. A higher demixing rate led to a structure with large finger-like macro-voids, i.e., M1, whereas a lower demixing rate caused the suppression of finger-like macro-voids, i.e., M5. More importantly, the adsorption study indicated that the nanocomposite adsorptive membranes were stable in the treatment of fluoride-containing water, with no leakage of Y-based NPs from membrane matrix to solution. It is expected that the in situ preparation technique could be used to produce next-generation nanocomposite adsorptive membranes with improved comprehensive properties for application in water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI