材料科学
电解质
溶解
阴极
阳极
电化学
过渡金属
锂(药物)
X射线光电子能谱
扫描电子显微镜
化学工程
金属
无机化学
金属锂
分析化学(期刊)
冶金
电极
物理化学
复合材料
催化作用
化学
内分泌学
工程类
医学
生物化学
色谱法
作者
Johannes Betz,Jan‐Paul Brinkmann,Roman Nölle,Constantin Lürenbaum,Martin Kolek,Marian Cristian Stan,Martin Winter,Tobias Placke
标识
DOI:10.1002/aenm.201900574
摘要
Abstract Lithium metal batteries (LMBs) combining a Li metal anode with a transition metal (TM) cathode can achieve higher practical energy densities (Wh L −1 ) than Li/S or Li/O 2 cells. Research for improving the electrochemical behavior of the Li metal anode by, for example, modifying the liquid electrolyte is often conducted in symmetrical Li/Li or Li/Cu cells. This study now demonstrates the influence of the TM cathode on the Li metal anode, thus full cell behavior is analyzed in a way not considered so far in research with LMBs. Therefore, the deposition/dissolution behavior of Li metal and the resulting morphology is investigated with three different cathode materials (LiNi 0.5 Mn 1.5 O 4 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , and LiFePO 4 ) by post mortem analysis with a scanning electron microscope. The observed large differences of the Li metal morphology are ascribed to the dissolution and crossover of TMs found deposited on Li metal and in the electrolyte by X‐ray photoelectron spectroscopy, energy‐dispersive X‐ray spectroscopy, and total reflection X‐ray fluorescence analysis. To support this correlation, the TM dissolution is simulated by adding Mn salt to the electrolyte. This study offers new insights into the cross talk between the Li metal anodes and TM cathodes, which is essential, when investigating Li metal electrodes for LMB full cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI