Machine learning applications for the prediction of surgical site infection in neurological operations

接收机工作特性 医学 决策树 机器学习 朴素贝叶斯分类器 人工智能 贝叶斯定理 人工神经网络 回顾性队列研究 外科 算法 计算机科学 支持向量机 内科学 贝叶斯概率
作者
Thara Tunthanathip,Sakchai Sae-heng,Thakul Oearsakul,Ittichai Sakarunchai,Anukoon Kaewborisutsakul,Chin Taweesomboonyat
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:47 (2): E7-E7 被引量:50
标识
DOI:10.3171/2019.5.focus19241
摘要

Surgical site infection (SSI) following a neurosurgical operation is a complication that impacts morbidity, mortality, and economics. Currently, machine learning (ML) algorithms are used for outcome prediction in various neurosurgical aspects. The implementation of ML algorithms to learn from medical data may help in obtaining prognostic information on diseases, especially SSIs. The purpose of this study was to compare the performance of various ML models for predicting surgical infection after neurosurgical operations.A retrospective cohort study was conducted on patients who had undergone neurosurgical operations at tertiary care hospitals between 2010 and 2017. Supervised ML algorithms, which included decision tree, naive Bayes with Laplace correction, k-nearest neighbors, and artificial neural networks, were trained and tested as binary classifiers (infection or no infection). To evaluate the ML models from the testing data set, their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), as well as their accuracy, receiver operating characteristic curve, and area under the receiver operating characteristic curve (AUC) were analyzed.Data were available for 1471 patients in the study period. The SSI rate was 4.6%, and the type of SSI was superficial, deep, and organ/space in 1.2%, 0.8%, and 2.6% of cases, respectively. Using the backward stepwise method, the authors determined that the significant predictors of SSI in the multivariable Cox regression analysis were postoperative CSF leakage/subgaleal collection (HR 4.24, p < 0.001) and postoperative fever (HR 1.67, p = 0.04). Compared with other ML algorithms, the naive Bayes had the highest performance with sensitivity at 63%, specificity at 87%, PPV at 29%, NPV at 96%, and AUC at 76%.The naive Bayes algorithm is highlighted as an accurate ML method for predicting SSI after neurosurgical operations because of its reasonable accuracy. Thus, it can be used to effectively predict SSI in individual neurosurgical patients. Therefore, close monitoring and allocation of treatment strategies can be informed by ML predictions in general practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cloud关注了科研通微信公众号
1秒前
TKTK发布了新的文献求助10
1秒前
2秒前
Greta应助小熊维尼摇摇车采纳,获得10
3秒前
3秒前
斯文败类应助song采纳,获得10
4秒前
yun完成签到,获得积分20
6秒前
科研达人发布了新的文献求助10
6秒前
7秒前
xinyue946983发布了新的文献求助10
8秒前
Bailey发布了新的文献求助10
8秒前
CodeCraft应助CaoRouLi采纳,获得10
9秒前
慕青应助TKTK采纳,获得30
11秒前
Xiaojie完成签到,获得积分10
12秒前
13秒前
Ghost完成签到,获得积分10
13秒前
徐振阳发布了新的文献求助10
13秒前
15秒前
15秒前
独特元蝶发布了新的文献求助10
15秒前
17秒前
18秒前
19秒前
liangye2222发布了新的文献求助10
20秒前
20秒前
小毛驴完成签到,获得积分10
20秒前
21秒前
Huang_being发布了新的文献求助10
22秒前
refraincc发布了新的文献求助10
24秒前
song发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
Orange应助BeBrave1028采纳,获得10
27秒前
Andrew完成签到,获得积分10
27秒前
28秒前
独特元蝶完成签到,获得积分20
28秒前
醉熏的灵发布了新的文献求助30
28秒前
cyyyyyyyyyy完成签到,获得积分10
30秒前
何1发布了新的文献求助10
30秒前
yang完成签到,获得积分10
31秒前
深情安青应助冬瓜熊采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068