Machine learning applications for the prediction of surgical site infection in neurological operations

接收机工作特性 医学 决策树 机器学习 朴素贝叶斯分类器 人工智能 贝叶斯定理 人工神经网络 回顾性队列研究 外科 算法 计算机科学 支持向量机 内科学 贝叶斯概率
作者
Thara Tunthanathip,Sakchai Sae-heng,Thakul Oearsakul,Ittichai Sakarunchai,Anukoon Kaewborisutsakul,Chin Taweesomboonyat
出处
期刊:Neurosurgical Focus [Journal of Neurosurgery Publishing Group]
卷期号:47 (2): E7-E7 被引量:43
标识
DOI:10.3171/2019.5.focus19241
摘要

Surgical site infection (SSI) following a neurosurgical operation is a complication that impacts morbidity, mortality, and economics. Currently, machine learning (ML) algorithms are used for outcome prediction in various neurosurgical aspects. The implementation of ML algorithms to learn from medical data may help in obtaining prognostic information on diseases, especially SSIs. The purpose of this study was to compare the performance of various ML models for predicting surgical infection after neurosurgical operations.A retrospective cohort study was conducted on patients who had undergone neurosurgical operations at tertiary care hospitals between 2010 and 2017. Supervised ML algorithms, which included decision tree, naive Bayes with Laplace correction, k-nearest neighbors, and artificial neural networks, were trained and tested as binary classifiers (infection or no infection). To evaluate the ML models from the testing data set, their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), as well as their accuracy, receiver operating characteristic curve, and area under the receiver operating characteristic curve (AUC) were analyzed.Data were available for 1471 patients in the study period. The SSI rate was 4.6%, and the type of SSI was superficial, deep, and organ/space in 1.2%, 0.8%, and 2.6% of cases, respectively. Using the backward stepwise method, the authors determined that the significant predictors of SSI in the multivariable Cox regression analysis were postoperative CSF leakage/subgaleal collection (HR 4.24, p < 0.001) and postoperative fever (HR 1.67, p = 0.04). Compared with other ML algorithms, the naive Bayes had the highest performance with sensitivity at 63%, specificity at 87%, PPV at 29%, NPV at 96%, and AUC at 76%.The naive Bayes algorithm is highlighted as an accurate ML method for predicting SSI after neurosurgical operations because of its reasonable accuracy. Thus, it can be used to effectively predict SSI in individual neurosurgical patients. Therefore, close monitoring and allocation of treatment strategies can be informed by ML predictions in general practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到,获得积分10
刚刚
汉堡包应助Meiyu采纳,获得10
1秒前
幽默不惜给幽默不惜的求助进行了留言
2秒前
青苹果完成签到,获得积分10
3秒前
Jolene发布了新的文献求助10
3秒前
lm完成签到,获得积分10
4秒前
兆林完成签到,获得积分10
6秒前
6秒前
WXY发布了新的文献求助20
7秒前
Hello应助小酒窝采纳,获得30
7秒前
橙橙橙子完成签到,获得积分10
8秒前
8秒前
9秒前
高大的迎梦完成签到,获得积分10
9秒前
腼腆的立辉完成签到,获得积分10
10秒前
茶语小文完成签到,获得积分10
11秒前
碧蓝的凡柔完成签到,获得积分10
13秒前
共享精神应助Jolene采纳,获得10
13秒前
星川发布了新的文献求助10
13秒前
14秒前
橙橙橙子发布了新的文献求助10
14秒前
思源应助guo采纳,获得10
14秒前
xuyang完成签到,获得积分10
15秒前
xuyang发布了新的文献求助10
18秒前
LMX完成签到 ,获得积分10
18秒前
刚刚完成签到,获得积分10
19秒前
19秒前
20秒前
CipherSage应助橙橙橙子采纳,获得10
20秒前
21秒前
百卒完成签到,获得积分10
22秒前
苏卿应助勤奋花瓣采纳,获得10
22秒前
22秒前
li发布了新的文献求助10
23秒前
24秒前
qqqyy完成签到,获得积分10
25秒前
orixero应助刘刘采纳,获得10
25秒前
思源应助fengxiaoyue采纳,获得10
26秒前
马路完成签到 ,获得积分20
26秒前
guo发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905