材料科学
石墨烯
电阻率和电导率
电子迁移率
铜
电导率
体积分数
纳米技术
导电体
复合材料
光电子学
冶金
电气工程
工程类
物理化学
化学
作者
Mu Cao,Ding‐Bang Xiong,Li Yang,Shuaishuai Li,Yiqun Xie,Qiang Guo,Zhiqiang Li,Horst Adams,Jiajun Gu,Tongxiang Fan,Xiaohui Zhang,Di Zhang
标识
DOI:10.1002/adfm.201806792
摘要
Abstract Highly efficient conductors are strongly desired because they can lead to higher working performance and less energy consumption in their wide range applications. However, the improvements on the electrical conductivities of conventional conductors are limited, such as purification and growing single crystal of metals. Here, by embedding graphene in metals (Cu, Al, and Ag), the trade‐off between carrier mobility and carrier density is surmount in graphene, and realize high electron mobility and high electron density simultaneously through elaborate interface design and morphology control. As a result, a maximum electrical conductivity three orders of magnitude higher than the highest on record (more than 3,000 times higher than that of Cu) is obtained in such embedded graphene. As a result, using the graphene as reinforcement, an electrical conductivity as high as ≈117% of the International Annealed Copper Standard and significantly higher than that of Ag is achieved in bulk graphene/Cu composites with an extremely low graphene volume fraction of only 0.008%. The results are of significance when enhancing efficiency and saving energy in electrical and electronic applications of metals, and also of interest for fundamental researches on electron behaviors in graphene.
科研通智能强力驱动
Strongly Powered by AbleSci AI