肺炎克雷伯菌
铜绿假单胞菌
微生物学
鲍曼不动杆菌
生物膜
抗菌剂
化学
卟啉
血红素
血红素
生物
生物化学
大肠杆菌
细菌
酶
基因
遗传学
作者
Seoung‐ryoung Choi,Bradley E. Britigan,Prabagaran Narayanasamy
出处
期刊:ACS Infectious Diseases
[American Chemical Society]
日期:2019-07-02
卷期号:5 (9): 1559-1569
被引量:57
标识
DOI:10.1021/acsinfecdis.9b00100
摘要
Iron- and heme-uptake pathways and metabolism are promising targets for the development of new antimicrobial agents, as their disruption would lead to nutritional iron starvation and inhibition of bacterial growth. Salts of gallium(III) (Ga), an iron mimetic metal, disrupt iron-dependent biological processes by binding iron-utilizing proteins and competing with iron for uptake by bacterial siderophore-mediated iron uptake systems. Ga porphyrins, heme mimetic complexes, disrupt heme-utilizing hemoproteins. Because Ga(NO3)3 and Ga porphyrin disrupt different pathways of bacterial ion acquisition and utilization, we hypothesized that if used in combination, they would result in enhanced antimicrobial activity. Antimicrobial activity of Ga porphyrins (Ga protoporphyrin, GaPP, or Ga mesoporphyrin, GaMP) alone and in combination with Ga(NO3)3 were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA) under iron-limited conditions. The Ga porphyrin/Ga(NO3)3 combination demonstrated substantial synergism against K. pneumoniae, P. aeruginosa, and MRSA. Time-kill assays revealed that the synergistic combination of GaPP/Ga(NO3)3 was bacteriostatic against K. pneumoniae and MRSA and bactericidal against P. aeruginosa. The GaPP/Ga(NO3)3 combination significantly disrupted K. pneumoniae and P. aeruginosa biofilms on plasma-coated surfaces and increased the survival of Caenorhabditis elegans infected with K. pneumoniae or P. aeruginosa. When assessing the antibacterial activity of the Ga(III)/antibiotic combinations, GaPP/colistin and Ga(NO3)3/colistin combinations also showed synergistic activity against K. pneumoniae and P. aeruginosa. Our results demonstrate that GaPP and Ga(NO3)3 have significant synergistic effects against several important human bacterial pathogens through dual inhibition of iron and heme metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI