An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting

人工神经网络 计算机科学 环境科学 短时记忆 期限(时间) 人工智能 短时记忆 气象学 循环神经网络 神经科学 地理 生物 工作记忆 认知 量子力学 物理
作者
Yun Bai,Bo Zeng,Chuan Li,Jin Zhang
出处
期刊:Chemosphere [Elsevier]
卷期号:222: 286-294 被引量:158
标识
DOI:10.1016/j.chemosphere.2019.01.121
摘要

To protect public health by providing an early warning, PM2.5 concentration forecasting is an essential and effective work. In this paper, an ensemble long short-term memory neural network (E-LSTM) is proposed for hourly PM2.5 concentration forecasting. The presented model is implemented using three steps: (1) ensemble empirical mode decomposition (EEMD) is firstly utilized for multi-modal feature extraction, (2) long short-term memory approach (LSTM) is then employed for multi-modal feature learning, and (3) inverse EEMD computation is finally used for multi-modal feature estimated integration. In each modeling process, the mode information of the PM2.5 and the corresponding meteorological variables in 1-h advance are utilized as inputs to forecast the next mode information of the PM2.5 concentration. To evaluate the performance of the E-LSTM model, two datasets collected from two environmental monitoring stations in Beijing, China, are investigated. It is demonstrated that the E-LSTM model inspired by ensemble learning, which constructs multiple LSTMs in different modes, obtained better forecasting performance than that using the single LSTM and feed forward neural network in terms of mean absolute percentage error (19.604% and 16.929%), root mean square error (12.077 μg m-3 and 13.983 μg m-3), and correlation coefficient criteria (0.994 and 0.991) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
酷炫非笑发布了新的文献求助10
2秒前
2秒前
脑洞疼应助王sir采纳,获得10
2秒前
3秒前
3秒前
嵇焱发布了新的文献求助10
3秒前
4秒前
Xu发布了新的文献求助10
4秒前
LC完成签到,获得积分10
5秒前
5秒前
宇文安寒完成签到,获得积分10
5秒前
5秒前
李剑鸿发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
7秒前
zorn完成签到,获得积分10
8秒前
SYLH应助明芷蝶采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
9秒前
吴1发布了新的文献求助10
10秒前
weirdo发布了新的文献求助10
10秒前
顾矜应助ximei采纳,获得10
11秒前
萧奕尘发布了新的文献求助10
11秒前
幸运小怪兽完成签到,获得积分10
11秒前
13秒前
13秒前
爱哭的鱼发布了新的文献求助10
14秒前
结实涑发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
gt完成签到 ,获得积分20
16秒前
guard发布了新的文献求助10
17秒前
word麻鸭完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716